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We study the analytic properties of the scaling function associated with the 2D
Ising model free energy in the critical domain T Q Tc, H Q 0. The analysis is
based on numerical data obtained through the Truncated Free Fermion Space
Approach. We determine the discontinuities across the Yang–Lee and Langer
branch cuts. We confirm the standard analyticity assumptions and propose
‘‘extended analyticity;’’ roughly speaking, the latter states that the Yang–Lee
branching point is the nearest singularity under Langer’s branch cut. We
support the extended analyticity by evaluating numerically the associated
‘‘extended dispersion relation.’’
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1. INTRODUCTION

The 2D Ising model is one of the best studied systems in statistical
mechanics. Nonetheless, some questions concerning its criticality, notably
in the presence of an external field H, remain open. The Ising model free
energy exhibits a singularity at the critical point H=0, T=Tc. The singu-
larity is described in terms of the Euclidean quantum field theory known as
the Ising Field Theory (IFT). It can be defined as a perturbed conformal
field theory through the action

AIFT=A(c=1/2)+y F E(x) d2x+h F s(x) d2x, (1.1)



where A(c=1/2) stands for the action of c=1/2 conformal field theory
(CFT) of free massless Majorana fermions, s(x) and E(x) are primary
fields of conformal dimensions 1/16 and 1/2. To be precise, we assume
that the normalizations of these fields are fixed by the usual CFT convention,

|x|2 OE(x) E(0)PQ 1; |x|1/4 Os(x) s(0)PQ 1 as |x| Q 0. (1.2)

Under this normalization, the parameters y and h in (1.1) have mass
dimensions 1 and 15/8, respectively. These parameters represent a devia-
tion from the Ising model critical point,

y=Cy DT(1+O(DT, H2)), (1.3a)

h=ChH(1+O(DT, H2)), (1.3b)

where DT=1 − T/Tc, and real positive constants Cy, Ch (as well as the
higher-order terms in the above relations) depend on the details of the
microscopic (lattice) interaction.2 The leading singular part Fsing(T, H) of

2 For the Ising models with nearest-neighbour interactions on square and triangular lattices,
specific values of these constants can be found in refs. 1 and 2; for higher order terms in
Eqs. (1.3) see refs. 3 and 2.

the Ising model specific free energy is universal, and it coincides with the
vacuum energy density of the IFT (1.1); in what follows we use the nota-
tion F(2py, h) for this quantity. It can be expressed through a universal
scaling function F(g) of a single variable—the scaling parameter

g=2py/h8/15 (1.4)

(see Eq. (3.20) later for the precise definition of F(g)). This scaling function
is of much interest as it controls all thermodynamic properties of the Ising
model in the critical domain. Although there are many exact results
(obtained through exact solutions of (1.1) at h=0 and all y, (4–8) and at
y=0 and all h; (9, 10) these data are collected in ref. 11) as well as much
numerical data (1, 12–15) about this function, its complete analytic charac-
terization is still lacking.

In this work we report preliminary results of a numerical study of the
analytic properties of this scaling function. We use certain modification of
the well-known Truncated Conformal Space Approach (TCSA), (16, 17) which
we call Truncated Free-Fermion Space Approach (TFFSA). Although this
modification is designed specificaly to treat the case of IFT (while TCSA is
applicable to a wide class of perturbed CFT), in our case it produces better
accuracy by taking full advantage of the fact that at h=0 the IFT (1.1) is a
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free-fermion theory. (4, 5) Using this approach, we compute numerically the
scaling function F(g) for real as well as for some complex values of g, to
the accuracy sufficient to make exploration of its analytic structure in the
complex g-plane. We locate the Yang–Lee edge singularity, (18, 19) and esti-
mate some of its characteristics. Also, we study the free energy F(2py, h) at
real y > 0 (low-temperature regime) and complex h; in particular, we
determine, with reasonable accuracy, the imaginary part of the metastable
branch of F for small as well as large values of h. For small h our result is
in good agreement with the prediction from the critical droplet calcula-
tions; (20, 21) moreover, we find a leading correction to the droplet model
asymptotic. We formulate an ‘‘extended analyticity conjecture’’ which
states, roughly speaking, that the continuation of the free energy under
Langer’s branch cut is analytic all the way down to the Yang–Lee singu-
larity. We then use our numerical data to support this conjecture by verify-
ing the associated ‘‘extended dispersion relation.’’

The paper is arranged as follows: In Section 2 some details of the
TFFSA are presented. In Section 3 we discuss what is known and what is
expected on the analytic properties of the free energy in the critical domain.
Basic notations used throughout the paper are introduced there. The
extended analyticity conjecture is formulated in Section 4, where the asso-
ciated dispersion relation is also derived. In Section 5 we briefly discuss the
excited (‘‘meson’’) states of IFT, and the role of the ‘‘false vacuum’’ reso-
nance in the formation of the finite-size energy spectrum in this theory. The
relation between the width of this resonance and the separation between
the meson energy levels at the ‘‘near-intersection’’ points is presented there.
Qualitative pictures of finite-size energy levels for real and pure imaginary
h obtained through the TFFSA are described in Section 6, where we also
explain in some detail how accurate numerical data for the scaling function
are extracted from the finite-size spectra. The data is described in Section 7,
and in Section 8 we present our analytical interpretation of it. That inclu-
des approximations of the discontinuities across the Yang–Lee and Langer
branch cuts, and numerical evaluation of the corresponding dispersion
relations. Numerical support for the extended analyticity is also presented
in this section. In Section 9 we discuss possible physical significance of the
extended analyticity.

2. THE TRUNCATED FREE-FERMION SPACE APPROACH

As is well known (see, e.g., ref. 22), at zero external field the Ising
model is equivalent to a free-fermion theory. Correspondingly, (1.1) can be
written as
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AIFT=AFF+h F s(x) d2x, (2.1)

AFF=
1

2p
F [k“̄k+k̄“k̄+im k̄k] d2x, m=2py. (2.2)

Here “=1
2 (“x − i“y), “̄=1

2 (“x+i“y), where x=(x, y) are Cartesian coor-
dinates, k, k̄ are chiral components of the Majorana fermi field, and s(x) is
the ‘‘spin field’’ associated with this fermion.

As in standard TCSA (see, e.g., ref. 23 and references therein), we start
with the IFT (1.1) in finite-size geometry, with one of the two Euclidean
coordinates compactified on a circle of circumference R, x+R ’ x. If y is
treated as (Euclidean) time, the finite-size Hamiltonian associated with
(2.1) can be written as

HIFT=HFF+hV, V=F
R

0
s(x) dx, (2.3)

where HFF is the Hamiltonian of the free-fermion theory (2.2). We are
interested in the eigenvalues of HIFT, particularly in its ground-state energy
E0(R, m, h), because for large R one expects to have

E0(R, m, h)=RF(m, h)+O(exp( − M1R)), (2.4)

with M1 being the gap in the spectrum of HIFT at R=., i.e., the mass of
the lightest particle of the field theory (1.1). In what follows, in refering
to the eigenvalues of the Hamiltonian (2.3) we typically use the notation
E(R), with the arguments m, h suppressed; in particular, E0(R) will stand
for the ground-state eigenvalue of (2.3).

The free part HFF of the Hamiltonian (2.3) is diagonal in the basis of
N-particle states of free fermions of mass |m|. At finite R the space of states
of (2.2) splits into two sectors, the Neveu–Schwartz (NS) sector and
Ramond (R) sector (with k, k̄ antiperiodic or periodic as x Q x+R,
respectively). In each sector the particle momenta are quantized as
pn=2pn/R where n ¥ Z+1/2 in NS sector, and n ¥ Z in R sector. In what
follows we typically use the notation ni for integers, and ki for half-
integers. The N-particle states can be obtained from the NS and R vacua
|0PNS and |0PR by applying the corresponding canonical fermionic creation
operators,

NS sector: |k1,..., kNPNS=a†
k1

· · · a†
kN

|0PNS k1,..., kN ¥ Z+1/2,
(2.5a)

R sector: |n1,..., nNPR=a†
n1

· · · a†
nN

|0PR n1,..., nN ¥ Z. (2.5b)
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The normalizations of these states are fixed (up to phases) by conventional
anticommutators,

{ak, a†
kŒ}=dk, kŒ, {an, a†

nŒ}=dn, nŒ. (2.6)

In all cases the energies associated with the N-particle states, EN(R), have
standard form

EN(NS)(R)=E0(NS)(R)+ C
N

i=1
wki

(R), (2.7a)

EN(R)(R)=E0(R)(R)+ C
N

i=1
wni

(R), (2.7b)

where

wk(R)=`m2+(2pk/R)2; wn(R)=`m2+(2pn/R)2 (2.8)

(with positive branch of the square root taken, in particular, w0(R)=|m|),
and

E0(NS)(R)=RF(m, 0) − |m| F
.

−.

dh

2p
cosh h log(1+e−|m| R cosh h), (2.9a)

E0(R)(R)=RF(m, 0) − |m| F
.

−.

dh

2p
cosh h log(1 − e−|m| R cosh h), (2.9b)

are the eigenvalues associated with |0PNS and |0PR, respectively. The term

F(m, 0)=
m2

8p
log m2 (2.10)

in Eqs. (2.9) accounts for the famous Onsager’s singularity of the Ising free
energy at zero h. (4)

In order to treat the IFT with nonzero h we can admit only the states
which respect the periodicity condition for the spin field, s(x+R, y)=
+s(x, y). This condition brings a distinction between the cases m > 0 (the
‘‘low-T regime’’) and m < 0 (the ‘‘high-T regime’’). The admissible states
are

m > 0: NS-states with N even, and R-states with N even, (2.11a)

m < 0: NS-states with N even, and R-states with N odd. (2.11b)

Ising Field Theory in a Magnetic Field 531



(at m=0 the odd-N states in the R sector can be viewed as even-N states,
with one a0 particle added). All the above statements are well-known (see,
e.g., ref. 22).

The operator hV in the full Hamiltonian (2.3) generates transitions
between the states in NS and R sectors. Fortunately, all its matrix elements
between the above states are known exactly. They are related in a simple
way to the finite-size formfactors of the field s(x), for which an explicit
expression exists,

NSOk1, k2,..., kK | s(0, 0) |n1, n2,..., nNPR

=S(R) D
K

j=1
g̃(hkj

) D
N

i=1
g(hni

) FK, N(hk1
,..., hkK

| hn1
,..., hnN

), (2.12)

where hn (hk) stand for the finite-size rapidities related to the integers n
(half-integers k) by the equations

|m| R sinh hk=2pk, |m| R sinh hn=2pn. (2.13)

In (2.12) FK, N is the well-known spin-field formfactor in infinite-space, (24)

FK, N(h1,..., hK | h −

1,..., h −

N)

=i[K+N
2 ]s̄ D

0 < i < j [ K
tanh 1hi − hj

2
2 D

0 < p < q [ N
tanh 1h −

p − h −

q

2
2

× D
0 < s [ K
0 < t [ N

coth 1hs − h −

t

2
2 , (2.14)

where

s̄=s̄ |m|1/8, s̄=21/12e−1/8A3/2=1.35783834... (2.15)

(with A standing for the Glaisher’s constant), and the rest of the factors
represent finite-size effects. The overall factor S(R) is essentially the
vacuum-vacuum matrix element

s̄S(R)=˛NSO0| s(0, 0) |0PR for m > 0,

NSO0| m(0, 0) |0PR for m < 0,
(2.16)
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where m(x) is the usual dual spin field, (25) and S(R) is given by

S(R)=exp 3(mR)2

2
FF

.

−.

dh1 dh2

(2p)2

sinh h1 sinh h2

sinh(mR cosh h1) sinh(mR cosh h2)

× log :coth
h1 − h2

2
: 4 , (2.17)

which was obtained in ref. 26. The momentum-dependent leg factors g and
g̃ are

g(h)=eo(h)/`|m| R cosh h, g̃(h)=e−o(h)/`|m| R cosh h, (2.18)

where

o(h)=F
.

−.

dhŒ

2p

1
cosh(h − hŒ)

log 11 − e−|m| R cosh hŒ

1+e−|m| R cosh hŒ
2 . (2.19)

The phase factors i[K+N
2 ] (where [ · · · ] denotes the integer part of the

number) appearing in (2.14) can be removed by an appropriate phase rota-
tion of the states, and thus play no role in the TFFSA computations.

The above expression (2.12) can be extracted from the result of recent
papers. (27) In fact, we have obtained it independently, before ref. 27
appeared, by a different approach. As our derivation seems to be simpler,
we outline it in Appendix A. This expression is the m ] 0 generalization of
corresponding massless matrix elements used in ref. 17 in the TCSA study
of IFT with m=0.

It is useful to note that the Hamiltonian (2.3) can be rewritten to make
its scaling form explicit,

HIFT=E0(NS)(R)+|m| H0(r)+|m| tHs(r), (2.20)

where

t=h/|m|15/8 (2.21)

and the operators H0(r) and Hs(r) (corresponding to the terms HFF and hV
in (2.3)) depend on a dimensionless parameter r=|m| R only.

The bulk energy density F(m, h) can be extracted from the large-R
asymptotic behaviour (2.4) of the ground-state eigenvalue of (2.3). As
follows from (2.20), it has the form

F(m, h)=
m2

8p
log m2+m2G(t), (2.22)
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where the first term is inherited from (2.10); the scaling function G(t) (and
related function F(g) defined in (3.20) later) is the main object of our
interest in this paper.

It is hardly possible to diagonalize the Hamiltonian (2.3) exactly. To
render it tractable by numerical methods we follow the idea of TCSA, i.e.,
we use finite-dimensional approximations (‘‘truncations’’) of the infinite
dimensional space of the states (2.5), which include only the states of
sufficiently low energy. The truncated Hamiltonian can be diagonalized
numericaly, yielding an approximation to the ground-state energy function
E0(R); the free energy is then extracted from its behaviour at sufficiently
large R, according to (2.4). More details about this analysis are presented
in Section 6.

3. ANALYTIC PROPERTIES OF THE SCALING FUNCTION

In this section we discuss known results and expected analytic proper-
ties of the scaling function in (2.22).

In fact, to describe the free energy F(m, h) for both positive and nega-
tive m one needs two scaling functions G(t) in (2.22). Although these two
functions are analytically related (see Section 3.3 later) we use separate
notations Glow(t) for m > 0 and Ghigh(t) for m < 0; these functions describe
the free energy in low-T and high-T regimes, respectively. Both functions
are defined so that Glow(0)=Ghigh(0)=0.

3.1. The Function Ghigh(t)

This function is even, i.e., Ghigh(t)=Ghigh(−t). Around t=0 it can be
represented by a convergent power series in t2,

Ghigh(t)=G2t2+G4t4+G6t6+ · · · . (3.1)

This series coincides with the perturbative expansion in h in the field
theory (1.1). The first coefficient G2 is known through this perturbation
theory exactly, (7) and the coefficient G4 was obtained with high accuracy by
using formfactor expansion of the four-spin correlation function. (28) There
is a substantial amount of numerical data on the further coefficients. What
appears to be rather accurate estimates of G2k up to G12 are presented in a
recent paper. (15) The data on these coefficients are collected in Table I.

The function Ghigh(t) can be analyticaly continued to complex values
of t. The Yang–Lee theory (18, 19) guarantees analyticity of Ghigh(t) in the
whole complex t plane with possible exception of the imaginary axis. At
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Table I. Numerical Values of the Coefficients G2n in (3.1). The First Column Con-

tains the Data from Refs. 7 and 15. The Results Obtained Through High-T Dispersion

Relation, Eq. (3.5), with the Use of Our Approximation (8.2), Are Presented in the

Second Column

From References From high-T dispersion relation

G2 −1.8452280... (7) −1.8452283
G4 8.33370(1) (15) 8.33410
G6 −95.1689(4) (15) −95.1884
G8 1457.55(11) (15) 1458.21
G10 −25884(13) (15) −25889
G12 5.03(1) × 105 (15) 5.02 × 105

G14 — −1.04 × 107

the imaginary axis one expects to observe branch cuts resulting from con-
densation of the Yang–Lee zeroes of the partition function in the thermo-
dynamic limit. These branch cuts extend from it0 to i. and from −it0 to
−i., as shown in Fig. 1, where t0 is some positive constant whose numer-
ical value will be estimated in the Section 6,

t0=0.18930(5). (3.2)

The branching points ± it0 represent the Yang–Lee edge singulari-
ty. (18) Combining these analytic properties with the asymptotic behaviour
Ghigh(t) 4 t16/15 (see Eq. (3.34) later) one can derive the dispersion rela-
tion (19)

Ghigh(t)=−t2 F
.

t0

2 Im Gimh(t)
t(t2+t2)

dt
p

, (3.3)

i ξ

ξ-- i

0

0

ξ

YL

YL*

Fig. 1. Analytic structure of Ghigh(t) in the complex t plane. YL and YLg denote the
Yang–Lee edge singularities; associated branch cuts are shown as solid lines.
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where the imaginary part of the function

Gimh(t) — Ghigh(−it+0) (3.4)

relates in the usual way to the discontinuity across either of the branch cuts
in Fig. 1. In particular, the coefficients G2n in (3.1) can be expressed in
terms of this function as

G2n=(−)n F
.

t0

2 Im Gimh(t)
t2n+1

dt
p

. (3.5)

In what follows we will refer to (3.3) as the high-T dispersion relation.
As is known, (29) the Yang–Lee edge singularity is a critical point, and

the associated CFT was identified in ref. 30 as the (nonunitary) minimal
model with central charge cYL=−22/5. This CFT has only one relevant
operator, the primary field of conformal dimension DYL=−1/5. There-
fore, one expects the singularities of Ghigh(t) at t= ± it0 to be of the form

Ghigh(t)=GA(t)+(t2
0+t2)

5
6 GB(t)+(t2

0+t2)
5
3 GC(t)

+subleading singular terms, (3.6)

where the functions GA(t), GB(t), GC(t),... , are regular at t= ± it0. To
some degree, the singular terms in (3.6) can be understood in terms of the
low-energy effective action

Aeff=ALYCFT+i |m|
12
5 l(t) F f−1/5(x) d2x+

a(t)
(2pm)2 F (TT̄)(x) d2x

+higher irrelevant operators, (3.7)

where f−1/5 is the relevant primary field mentioned above, and the rest of
the action contains the contributions of irrelevant operators, the field (TT̄)
(i.e., the L−2L̄−2 descendent of the identity operator) being the lowest of
such operators. The dimensionless coupling constants l(t), a(t),... , are
certain functions of the scaling parameter t, universal in the sense that they
are uniquely determined by the original field theory (1.1) (but taken as
‘‘input’’ data in the effective theory (3.7)); all these functions are expected
to be regular at t= ± it0, and the critical point(s) ± it0 is defined by the
condition l( ± it0)=0. Thus, in the vicinity of, say, −it0

l(t)=l1(t2
0+t2)+O((t2

0+t2)2); (3.8a)

a(t)=a0+O(t2
0+t2); (3.8b)

and similarly for the other couplings.
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At t=−it0 (as well as at t=it0) the field theory (1.1) describes the
Renormalization Group flow from the Ising model fixed point with c=1/2
down to the Yang–Lee fixed point with cYL=−22/5. In this case the mass
gap M1 vanishes, and the finite-size energy levels are expected to approach
the linear asymptotic (2.4) with a power-like, not exponential, accuracy.
These power-like corrections to the linear asymptotic (2.4) can be analysed
through the perturbation theory based on the effective action (3.7). In par-
ticular, for the ground-state level of (2.20) with t= ± it0 one obtains

E0(R)=F0R+
p

6R
1 − ceff+

pc2
effa0

24(mR)2 −
2p2c3

effa
2
0

(24)2 (mR)4+O(R−28
5 )2 , (3.9)

where ceff=cYL − 24DYL=2/5 is the ‘‘effective central charge’’ of the
Yang–Lee CFT, a 0 is the leading coefficient in (3.8b), and F0 stands for the
free energy F0 associated with this flow; the last quantity is related to the
value of the scaling function Ghigh(t) at the singular point,

F0=F(m, 0)+m2Ghigh( ± it0). (3.10)

The calculation leading to (3.9) is similar to that presented in ref. 31; we
skip it in this report.

3.2. The Function G low(t)

Unlike Ghigh(t) above, the analytic continuation of Glow(t) is not an
even function of t. More precisely, for m > 0 the analytic continuation in h
of the free energy (2.22) yields two different analytic functions, depending
on whether one continues from positive or negative parts of the real axis.
In what follows, by Glow(t) we always understand analytic continuation of
the free energy from positive part of the real t axis. Again, according to the
Yang–Lee theory, Glow(t) is analytic in the right half-plane Re t > 0.
Langer’s theory (20) (as well as earlier calculations within ‘‘droplet
models’’ (32, 33)) predicts a weak singularity at t=0, and it is usually
assumed (see, e.g., refs. 34, 35, and 36) that Glow(t) is analytic in the full
complex t-plane with the branch cut from 0 to −., as is shown in Fig. 2.
We will call this the standard analyticity assumption. This assumption will
be confirmed by our numerical analysis in Section 7. The function Glow(t)
admits an asymptotic expansion in powers of t,

Glow(t) 4 G̃1t+G̃2t2+ · · · . (3.11)
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ξ

− ξSP *

Fig. 2. Analytic structure of Glow(t). The solid line is the Langer’s branch cut. The star
denotes the nearest singularity under this branch cut; its significance is discussed in Section 9.

Again, the coefficients G̃n here in principle can be computed by means of
the perturbation theory in h in (2.1). Thus, the first coefficient is directly
related to the spontaneous magnetization at zero h, given by (2.15),

G̃1=−s̄. (3.12)

The coefficient G̃2 is also known exactly, since its computation involves
integrating the two-spin correlation function, which is determined in terms
of the Painlevé functions. (7) Several further coefficients were estimated
in ref. 37 using exact large-distance expansions of multi-spin correlation
functions at zero h. Numerical estimates from lattice series analysis are also
available. (13) We quote these results in Table II.

If one makes the above standard analyticity assumption (as in Fig. 2),
the coefficients G̃n can be represented as the integrals (35)

G̃n=(−)n+1 F
.

0

Im Gmeta(t)
tn+1

dt
p

, n=2, 3, 4,... , (3.13)

where the function

Gmeta(t) — Glow(−t+i0) (3.14)

at positive t describes the values of Glow(t) at real negative t, at the upper
edge of the branch cut in Fig. 2. Correspondingly, the discontinuity of
Glow(t) across this branch cut equals 2i Im Gmeta(−t). The Eq. (3.13)
follows directly from the dispersion relation (34, 35)

Glow(t)=G̃1t − t2 F
.

0

Im Gmeta(t)
t2 (t+t)

dt
p

, (3.15)
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Table II. Numerical Values of the Coefficients G̃n in (3.11). Exact Results for G̃1

and G̃2, and Numerical Estimates Found in Literature, Are Collected in the First

Column. The Second Column Shows Results Obtained Through Low-T Dispersion

Relation, Eq. (3.13), Using Our Approximation (8.14)

From References From high-T dispersion relation

G̃1 −1.35783834... (22) −1.35783835
G̃2 −0.0489532... (7) −0.0489589
G̃3 0.0387529 (37); 0.039(1) (13) 0.0388954
G̃4 −0.0685535 (37); −0.0685(2) (13) −0.0685060
G̃5 — 0.18453
G̃6 — −0.66215
G̃7 — 2.952
G̃8 — −15.69
G̃9 — 96.76
G̃10 — −6.79 × 102

G̃11 — 5.34 × 103

G̃12 — −4.66 × 104

G̃13 — 4.46 × 105

G̃14 — −4.66 × 106

where the integral converges at any finite t because Glow(t) ’ t16/15 as
t Q . (as follows from (3.28) and (3.29) later).

The function Gmeta(t) deservingly attracts much attention, for at least
two reasons. One is the commonly accepted interpretation of the function

Fmeta(m, h)=m2 1 1
8p

log m2+Gmeta(t)2 , t=h/|m|15/8, (3.16)

which coincides with the analytic continuation of the free energy (2.22) to
negative values of h, as the free energy associated with the metastable state
at T < Tc. In fact, to the best of our knowledge, it is the only mathemati-
cally precise definition of the metastable free energy available today. The
function (3.16) takes complex values, and its imaginary part

C(m, h) — Im Fmeta(m, h)=m2 Im Gmeta(t) (3.17)

is interpreted as the rate of decay of the metastable state. More precisely,
according to Langer’s theory, (20, 38) the actual rate of decay is asymptoti-
cally proportional (with the constant factor absorbing the time scale) to
this imaginary part in the limit h Q 0 (or t Q 0). It is tempting to assume
(as is often done in the literature on nucleation theory) that similar relation
extends to some finite domain of h, although it is understood that the pro-
portionality coefficient, being sensitive to at least some details of the kinetic
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model, may very well depend on h, and its degree of universality is not
clear. Another, and much better understood, interpretation of (3.16) is in
terms of the quantum field theory (1.1) in 1+1 Minkowski space-time.
Namely, at y > 0 and h ] 0 this field theory exhibits a global resonance
state commonly refered to as the ‘‘false vacuum,’’ and the quantity (3.16)
coincides with the associated (complex) energy density; in particular, the
imaginary part of (3.16) gives precisely the decay probability (per unit
volume and per unit time) of this resonance state. (39–41) If h is small, both of
the above interpretations allow one to justify the validity of the instanton
saddle-point calculation, which in the D=2 case yields the following h Q 0
asymptotic behaviour of the imaginary part of (3.16) (21) (see refs. 20, 39, 40,
41, and 34 for such calculations in more general context),

C(m, h) Q
s̄h
2p

exp 1 −
pm2

2s̄h
2 as h Q 0, (3.18)

where s̄=s̄ |m|1/8 is the magnetization at zero h (see Eq. (2.15)). It is fair to
say that there is still some controversy about whether (3.18) gives the
correct numerical coefficient in the asymptotic behaviour of this imaginary
part. (42) Our analysis in Section 7 is completely consistent with the coeffi-
cient in (3.18), and actually offers the leading correction to this asymptotic
(see Eq. (5.9)).

3.3. The Function F(g)

Although the scaling functions Ghigh and Glow above are defined inde-
pendently, in fact they can be analytically related one to another. To do
this it is useful to introduce another scaling variable,

g=m/|h|8/15, (3.19)

and rewrite the free energy (2.22) as

F(m, h)=
m2

8p
log m2+|h|16/15 F(g). (3.20)

Of course, the scaling function F(g) here is related to the function(s) G(t)
in (2.22), and vice versa. If both m and h are real and positive we have

g=1/t8/15, (3.21)

and therefore

F(g)=g2Glow(1/g15/8) for real g > 0. (3.22)
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Similarly, if h > 0 but m < 0 the variables (2.21) and (3.19) are related as

g=−1/t8/15, (3.23)

so that

F(g)=g2Ghigh(1/(−g)15/8) for real g < 0. (3.24)

On the other hand, for fixed h ] 0 the free energy F(m, h), as function
of m, is expected to be analytic at all finite real m, including the point
m=0, for if h ] 0 the correlation length remains finite even at m=0.
Therefore the scaling function F(g) can be written as

F(g)=−
g2

8p
log g2+F̃(g), (3.25)

where the function F̃(g) is analytic at all finite real g.
Equations (3.22) and (3.24) can be promoted to analytic relations valid

for complex values of g. One notes that the variable transformation (3.23)
maps the right half-plane in Fig. 1 onto the wedge −4p/15 < arg(−g) <
4p/15; we call it the ‘‘High-T Wedge,’’ see Fig. 3, where it is marked as the
region HTW. Therefore the following analytic relation holds in this wedge,

−
g2

4p
log(−g)+F̃(g)

=g2Ghigh(1/(−g)15/8) for − 4p/15 < arg(−g) < 4p/15, (3.26)

HTW

η

Fig. 3. Mapping of Fig. 1 under the variable transformation (3.23); the wedge HTW
( − 4p

15 < arg(−g) < 4p

15) is the image of the right half-plane in Fig. 1. Rotating the branch cuts as
suggested by the arrows opens the principal sheet of the g-plane shown in Fig. 4.
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where the principle branch of the log function (i.e., log(y) is real for real
y > 0) should be taken. The Yang–Lee branching points are located at the
points g=−Y0e ± i4p/15 in the complex g-plane, where

Y0=1/t8/15
0 . (3.27)

The way the corresponding branch cuts are drawn in Fig. 1 corre-
sponds to placing them along the rays g=y e ± i4p/15, with y running from
−Y0 to +., as is done in Fig. 3. However, it is convenient to rotate these
branch cuts 180°, as is suggested by arrows in Fig. 3. This way one exposes
the full ‘‘principal sheet’’ of the complex g plane, shown in Fig. 4, where
the branch cuts extend along the rays g=ye ± i4p/15, −. < y < −Y0. In this
picture the way to reach the left half plane in Fig. 1 is to go from the region
HTW under either of the cuts. This complication is not important, as in
view of the symmetry Ghigh(t)=Ghigh(−t) one expects to see there merely
another copy of the principal sheet. More importantly, there is now a direct
way (through some vicinity of the real axis, where F̃(g) is analytic) into the
right-hand part of the principal sheet. Here, in the wedge −4p/15 <
arg(g) < 4p/15 (the domain LTW+), which is the image of the right half
plane in Fig. 2 under the variable transformation (3.21), the function F̃(g)
is related to Glow(t) as

−
g2

4p
log(g)+F̃(g)=g2Glow(1/g15/8) for − 4p/15 < arg(g) < 4p/15,

(3.28)

C*

SHD

B*
A*

BA
C

O

η

LTW

LTW+

θ

HTW

YL*

YL

Fig. 4. Principal sheet of the g-plane for the scaling function F̃(g). The wedge LTW
( − 8p

15 < arg(g) < 8p

15) is the image of the principal sheet in Fig. 2 under the map (3.21). Analyti-
city of F̃(g) in the wedge SHD ( − 11p

15 < arg(g) < −8p

15) is the subject of the ‘‘extended analyti-
city’’ conjecture in Section 4.
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where again the principle branch of the logarithm is understood. Thus,
F̃(g) is analytic in the wedges HTW and LTW+ in Fig. 4, where it matches
the functions Ghigh and Glow through (3.26) and (3.28), plus it is analytic in
some finite neighbourhood of the point g=0. Moreover, the transforma-
tion (3.21) maps the full principal sheet of the complex t-plane in Fig. 2
onto twice wider ‘‘Low-T Wedge’’ −8p/15 < arg(g) < 8p/15 (shown as
LTW in Fig. 4), with the upper and lower edges of the branch cut in Fig. 2
represented by the rays arg(g)= + 8p/15. The standard analyticity
assumption (see Section 3.2) implies analyticity of F̃(g) in this wider wedge.
Not unexpectedly, our numerical analysis in Section 8 will confirm this to
an high degree of precision. The question interesting indeed is about ana-
lytic properties of this scaling function in the remaining part of the g-plane,
the ‘‘Shadow Domain’’ −11p/15 < arg(g) < −8p/15 (SHD in Fig. 4).
Significance of this problem will be discussed in Section 9. In Section 4
later we will formulate what we believe to be the most natural conjecture
about the shadow domain analyticity.

In any case, F̃(g) is analytic at g=0, and in some finite domain
around this point it can be represented as a convergent power series,

F̃(g)=F0+F1g+F2g2+ · · · . (3.29)

In fact, the first two coefficients in series (3.29) are known exactly, thanks
to integrability of the field theory (1.1) with y=0. (9) The coefficient F0

appears as the amplitude in its free energy,

F(0, h)=F0 |h|16/15, (3.30)

which was computed in ref. 10,

F0=−
C(1/3) C(1/5) C(7/15)

2pC(2/3) C(4/5) C(8/15)
14p2C2(13/16) C(3/4)

C2(3/16) C(1/4)
28/15

. (3.31)

The coefficient F1 is related to the expectation value of the energy density
field E(x) in this integrable theory,

OEP|y=0=−2pF1 |h|8/15, (3.32)

which was determined in ref. 43,

OEP|y=0=(2.00314...) |h|8/15. (3.33)
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Table III. First Few Coefficients of the Power Series (3.29): Exact Results from

Integrable Field Theory (First Column), Estimates from TFFSA Data (Second

Column), and Results Obtained from the Extended Dispersion Relation, Eq. (4.10),

Using Approximation (8.21) (Third Column)

From References From TFFSA data From high-T dispersion relation

F0 −1.1977334... (10) −1.1977331 −1.1977320
F1 −0.3188096... (43) −0.3188103 −0.3188192
F2 — 0.1108867 0.1108915
F3 — 0.0164266 0.0164252
F4 — −2.64 × 10−4 −2.64 × 10−4

F5 — −5.14 × 10−4 −5.14 × 10−4

F6 — 2.07 × 10−4 2.09 × 10−4

F7 — −4.52 × 10−5 −4.48 × 10−5

F8 — — 3.16 × 10−7

F9 — — 4.31 × 10−6

F10 — — −1.99 × 10−6

Further coefficients can in principle be computed using perturbation theory
in y; this however is a hard problem because multipoint correlation func-
tions of the y=0 theory are not known exactly (see, however, ref. 44). Our
numerical analysis in Section 6 yields next six coefficients F2 to F7 with
reasonable accuracy (see Table III).

According to (3.26) and (3.28), the coefficients Fn control the asymp-
totics of the functions Ghigh(t) and Glow(t) at large t; for instance, for
−p/2 < arg(t) < p/2 and sufficiently large |t|

Ghigh(t)=F0t
16
15 − F1t

8
15+

1
15p

log t2+ C
.

n=2
(−)n Fnt

8(2 − n)
15 as t Q ..

(3.34)

Similar expansion (without the (−)n factors) holds for Glow(t) in the wider
domain −p < arg(t) < p. Conversely, expansions (3.1) and (3.11) can be
rewritten as large-g expansions of the scaling function F(g) in the corre-
sponding domains of the g plane. Thus, the expansion

−
g2

4p
log(−g)+F̃(g)=G2(−g)−7

4+G4(−g)−22
4 +G6(−g)−37

4 + · · ·

for −
4p

15
< arg(−g) <

4p

15
(3.35)
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converges to F(g) for sufficiently large g in the domain HTW in Fig. 4. In
the domain LTW the function F(g) has asymptotic expansion

−
g2

4p
log(g)+F̃(g) 4 G̃1g

1
8+G̃2g−7

4+G̃3g−29
8 + · · · as g Q .,

for −
8p

15
< arg(g) <

8p

15
. (3.36)

To prepare notations for our analysis in Sections 6 and 7 let us briefly
describe the expected behaviour of the scaling function F(g) along the axes
AOBg, AgOB and on the rays OC, OCg in Fig. 4; these domains are of
particular interest for our discussion.

The axis AOBg corresponds to g=e
4p

15 iy with real (positive as well as
negative) y. The values of the scaling function F(g) along this axis are
related to the free energy F(m, h) at pure imaginary h as follows. Let us
introduce the function

Fimh(y)=−
y2

4p
log |y| −

i y2

15
+e−8p

15 iF̃(ye
4p

15 i − i0). (3.37)

According to (2.22), (3.20), and (3.25), this function relates to the analytic
continuations of Ghigh(t) and Glow(t) to pure imaginary t. Namely,

Fimh(y)=y2Glow( − i/y15/8+0) for y > 0; (3.38a)

Fimh(y)=y2Ghigh( − i/(−y)15/8+0) for y < 0. (3.38b)

Therefore it takes real values for y [ − Y0 (the upper edge of the branch
cut A-YL in Fig. 4), and becomes complex-valued for y > −Y0, where its
imaginary part relates to imaginary part of the function (3.4),

Dimh(y) — Im Fimh(y)=y2 Im Gimh(1/(−y)15/8), for y < 0. (3.39)

The structure of the singularity of Fimh(y) at −Y0 can be described in
terms of the expansion (3.6). As in the analysis in Sections 6–8 we use the
variable g rather then t, let us introduce here more suitable notations. In
the vicinity of −Y0 we expect to have

Fimh(y)=A(y)+B(y)(−Y0 − y − i0)
5
6+C(y)(−Y0 − y − i0)

5
3+ · · · , (3.40)
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where the real analytic functions A(y), B(y), C(y),... , are regular at
y=−Y0, i.e., they admit the power-series expansions

A(y)=A0+A1(−Y0 − y)+A2(−Y0 − y)2+ · · · , (3.41a)

B(y)=B0+B1(−Y0 − y)+ · · · , (3.41b)

C(y)=C0+ · · · , (3.41c)

around the point −Y0, with real coefficients. The structure (3.40) follows
from the expected form (3.7) of the effective action in the vicinity of the
critical point. The first subleading singular term written down in (3.40) is
due to the term TT̄ in (3.7). Simple perturbative analysis (which we skip in
this report) allows one to relate some of the coefficients in (3.41) to the
parameters in (3.8),

B0=fYLa2
YL(15l1Y−47

200 /4)5/6, C0=a0 B2
0/4Y2

0, (3.42)

where fYL=−`3/12 is the free energy amplitude of the integrable
Yang–Lee field theory, (45, 31) and aYL=2.6429446... is the corresponding
amplitude in its ‘‘mass to coupling relation.’’ (31, 47)

Let us also write down the y-series expansions of (3.39), which follow
directly from (3.29). For sufficiently small |y| we have

Dimh(y)= C
.

n=0
F̄nyn, (3.43)

where

F̄n=Fn sin
4p(n − 2)

15
for n ] 2; F̄2=−

1
15

. (3.44)

The axis OC in Fig. 4 (i.e., g=y e−i 8p

15 with real y > 0) is the image of
the upper edge of the branch cut in Fig. 2. The values of F(g) along this
axis are related to the complex free energy (3.16),

Fmeta(y) — −
y2

4p
log y+

2iy2

15
+e i 16p

15 F̃(ye−i 8p

15)=y2Gmeta(1/y
15
8 ). (3.45)

In view of (3.15) and (3.17), the imaginary part of this function plays par-
ticularly important role, so we introduce for it a separate notation

Dmeta(y)=Im Fmeta(y)=
2
15

y2+
1
2i

(e i 16p

15 F̃(ye−i 8p

15) − e−i 16p

15 F̃(ye i 8p

15)). (3.46)
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As follows from (3.45), this function enjoys a power series expansion

Dmeta(y)= C
.

n=0
Dnyn, (3.47)

with

Dn=Fn sin
8p(2 − n)

15
for n ] 2; D2=

2
15

, (3.48)

which converges for sufficiently small y. On the other hand, Dmeta(y)
decays very fast at large positive y. According to (3.18),

Dmeta(y) Q
s̄

2p
V(y), as y Q+., (3.49)

where V(y) stands for the function

V(y)=y
1
8 exp( − py

15
8 /2s̄). (3.50)

4. EXTENDED ANALYTICITY

In the previous Section we have described the domains of analyticity
of the scaling function F̃(g) which follow from previously known results.
An unexplored area lays between the High-T and Low-T Wedges in Fig. 4,
the ‘‘Shadow Domain’’ SHD. In more conventional notations (i.e., in terms
of the scaling variable t) this domain is located under the Langer’s branch
cut in Fig. 2, imediately below the negative real axis. Alternatively, it can
be reached by going under either of the branch cuts in Fig. 1. We believe
the problem of establishing the analytic properties of free energy in the
shadow domain is an important one, and it was one of the motivations of
this work. Some reasons for our interest in this problem are explained in
Section 9.

The simplest conceivable possibility is that the function F̃(g) is
actually analytic in the wedge −11p/15 < arg(g) < 11p/15 which includes
the whole of the shadow domain. It is also the most elegant possibility (to
our sense of beauty, that is), because it renders the Yang–Lee point an
additional significance of being the closest singularity under the Langer’s
branch cut in Fig. 2. We formulate it as the following

Extended Analyticity Conjecture. The scaling function F̃(g) is
analytic in the whole complex g-plane with two branch cuts extending from
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the points YL and YLg to infinity, along the rays YL − A and YLg − Ag in
Fig. 4, respectively.

The extended analyticity is equivalent to certain ‘‘extended’’ dispersion
relation, expressing this scaling function in terms of its discontinuity across
the branch cuts in Fig. 4. To write it down, let us introduce the function

D̃(y)=ie−i 8
15 p(F̃( − ye i 4

15
p − i0) − F̃(ye−i 11

15 p+i0)), (4.1)

which is the discontinuity of F̃(g) across the branch cut YL − A, with
additional phase factor introduced for later convenience. Here y is a posi-
tive real variable interpreted as the coordinate along the ray O − A in
Fig. 4. The function (4.1) vanishes for y < Y0, while at y > Y0 it takes
complex values. In the last domain it coincides with certain analytic con-
tinuation of the function Dimh(y),

D̃(Y0+z)=Dimh( − Y0+z e−ip+i0), (z > 0). (4.2)

Unfortunately, this function grows too fast at large positive y (D̃(y) Q
−y2/4 as y Q+.), and writing down the dispersion integral directly for
F̃(g) would require at least three subtractions. It is more convenient to use
instead the function

D(y)=Dlog(y)+D̃(y), (4.3)

where

Dlog(y)=1
4 y2. (4.4)

The function (4.3) is related to the mismatch between the functions

Fhigh(g)=−
g2

4p
log(−g)+F̃(g) (4.5)

and

Flow(g)=−
g2

4p
log(g)+F̃(g) (4.6)

at the ray O − A. According to the asymptotics (3.35) and (3.36), the func-
tion (4.3) exhibits a much slower growth rate, D(y) Q Dass(y) as y Q+.,
where

Dass(y)=−e−i p

8 G̃1y
1
8, (4.7)
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and hence one can write down the dispersion integral with only one sub-
traction,

F̃(g)=F0+F̃log(g) −
g

p
F

.

Y0

y Re(e
4pi
15 D(y))+g Re(e

8pi
15 D(y))

y2+2yg cos(4p/15)+g2

dy
y

, (4.8)

where the term

F̃log(g)=−
Y0g

4p
cos(4p/15)+

g2

8p
log (Y2

0+2gY0 cos(4p/15)+g2) (4.9)

comes from the domain 0 [ y < Y0 in which D(y) coincides with (4.4).
We will refer to Eq. (4.8) as the ‘‘extended dispersion relation.’’ Its

validity is equivalent to the validity of the extended analyticity assumption
stated above, and under this assumption Eq. (4.8) must hold in the whole
complex g-plane, including the shadow domain SHD in Fig. 4.

From (4.8) one readily derives the following expressions for the coef-
ficients of the Taylor expansion (3.29),

F0=Re 5e
8pi
15

p
F

.

0

D(y) − Dass(y)
y

dy6 , (4.10a)

F1=−
Y0

4p
cos(4p/15) −Re 5e

4pi
15

p
F

.

Y0

D(y) dy
y2

6 , (4.10b)

F2=
1

4p
log Y0+Re 51

p
F

.

Y0

D(y) dy
y3

6 , (4.10c)

Fn=(−)n Re 5e
4pi
15 (2 − n)

p
F

.

Y0

(D(y) − Dlog(y)) dy
yn+1

6 for n > 2. (4.10d)

In Section 8 later we will bring up some numerical evidence to the
validity of this extended dispersion relation, thus furnishing a support for
the above extended analyticity conjecture.

5. EXCITED STATES. FALSE VACUUM

Although in this work we are mostly interested in the free energy
F(m, h), and hence concentrate most of attention on the ground-state
energy (2.4) of the finite-size Hamiltonian (2.3), some analysis of excited
states will prove to be useful in Section 8, where we study the function
Fmeta(y). To prepare for this discussion let us briefly remind qualitative
properties of the quantum field theory (2.1), in infinite space-time, inter-
preted as a particle theory. (48)
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For m > 0 and h=0 (i.e., for g=+.) we have just a free fermion
theory (2.2). In this case the vacuum of the bulk theory is two-fold degen-
erate (the ground states in NS and R sectors degenerate as R Q .), thus
manifesting the spontaneous breakdown of the s Q − s symmetry. The
particles (i.e., the free fermions of (2.2)) are identified with the ‘‘domain
walls.’’ Adding the interaction term in (2.1) creates a confining force
between these fermions (which henceforth are refered to as ‘‘quarks’’), and
for nonzero h the particle spectrum contains only their bound states—
‘‘mesons.’’ If m > 0 and h is small (i.e., g is large positive) the correspond-
ing ‘‘string tension’’ is small ( ’ 2s̄h, where s̄ is the spontaneous magneti-
zation at zero field given by (2.15)), and there is a large number of stable
mesons, their masses Mi densely filling the interval between 2m and 4m
(the mesons with M > 2 M1, M1 being the lightest meson mass, are
generally unstable). In this region of small h the lower part of the meson
mass spectrum (with Mi − 2m ° m) can be understood in terms of non-
relativistic quarks interacting via a linear confining potential. This inter-
pretation agrees with the result of ref. 48 for the masses of these lightest
mesons,

Mi − 2m Q

(2s̄h)
2
3 zi

m
1
3

as h Q 0, (5.1)

where −zi, i=1, 2, 3,..., are zeroes of the Airy function, Ai(−zi)=0. In
fact, a few first relativistic corrections to these masses can be computed (see
Appendix B),

Mi=m 32+
(2s̄)

2
3 zi

g
5
4

−
(2s̄)

4
3 z2

i

20g
5
2

+1 11z3
i

1400
−

57
280

+
q2

2
2 (2s̄)2

g
15
4

+O(g−5)4 , (5.2)

where the constant q2 is the same as in Eq. (5.8) later.
As g decreases, the heavier of the mesons gradualy disappear from the

spectrum of stable particles; when their masses exceed the stability
threshold 2M1 they (in general) become resonance states. In particular,
when g reaches zero (i.e., m=0), only three stable mesons remain below
the threshold; in this case however there are additional five stable particles
above the threshold, which owe their stability to the fact that the field
theory (1.1) with y=0 is integrable. (9) This process continues when g

550 Fonseca and Zamolodchikov



4

6

8

10

12

14

-4 -3 -2 -1 0 1 2 3 4

M
i(η

) 
/ h

 8
/1

5

η

M1

M2

M3

2 M1

TFFSA data
expansion (5.2)
expansion (5.3)

Fig. 5. Masses of the three lighest particles in the Ising field theory (1.1). The solid lines are
the plots of the dimensionless ratios Mi/|h|8/15 (i=1, 2, 3) versus the parameter (3.19). The
dashed lines represent the corresponding large-|g| expansions, Eqs. (5.2) and (5.3) (with all
terms explicitly written in these Eqs. included).

becomes negative, until finally at g < g2 (g2 % − 2.09, see Section 6 later)
only one particle remains stable. As g Q − . its mass M1 approaches |m|,3

3 The numerical value of the constant a in Eq. (5.3) comes from our estimate

a % s̄2(247/9 `3 − 23/2+14/3p)

of leading ( ’ h2) perturbative mass correction. The approximation used in this estimate is
similar to that proposed in ref. 37. We will present this calculation elsewhere.

M1=|m| (1+a/(−g)
15
4 +O((−g)−15

2 )); a % 10.75. (5.3)

Although a detailed discussion of the mass spectrum is outside the scope
of this paper (we intend to present it separately), we show in Fig. 5 the g

dependence of the first few meson masses obtained using the TFFSA.
The mesons described above are excitations over the stable vacuum of

the system (which is unique for h ] 0). If m > 0 and h is sufficiently small,
the system exhibits also an unstable ‘‘false vacuum,’’ a global resonance
state whose (complex) energy is an intensive quantity, i.e.,

Emeta=R Fmeta(m, h), (5.4)

where R Q . is the spatial size of the system. The corresponding energy
density Fmeta is a complex-valued quantity, and its imaginary part is inter-
preted as the decay probability density (the probability per unit volume
and unit time) of the false vacuum. According to standard arguments (see
refs. 39–41) the resonance energy density Fmeta(m, h) coincides with the
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analytic continuation of the vacuum energy density F(m, h) in h, from
positive to negative values of h, i.e., it can be written as

Fmeta(m, h)=
m2

8p
log m2+|h|

16
15 Fmeta(y), y=m/|h|

8
15, (5.5)

where Fmeta(y) is the function defined in Section 3. According to (3.18), at
small h (i.e., at large y) the imaginary part

C(m, h)=|h|
16
15 Dmeta(y) (5.6)

decays exponentially, see Eq. (3.49). In fact, it was argued in ref. 21 that
the asymptotic (3.18) itself holds with exponential accuracy provided one
replaces 2s̄h Q DF(m, h) and m Q mq(m, h), where

DF(m, h) — Re Fmeta(m, h) − F(m, h) % 2s̄h+O(h3), (5.7)

is the ‘‘string tension,’’ and mq(m, h) is the ‘‘quark mass.’’ Although it is
not clear how to give a precise definition to the last quantity, it is natural
to assume that at small h it admits an expansion (perhaps, an asymptotic
one) in powers of h2,

mq=m (1+q2(s̄ h/m2)2+O(h4)), (5.8)

where q2 is some constant, whose evaluation constitutes a separate and
somewhat involved problem; at the moment we have only a preliminary
numerical estimate, q2 % 0.14(1).4 As the result, the expected asymptotic

4 It results from estimating the three-quark contribution to the quark self-energy; we plan to
address this problem separately.

form of the imaginary part of the function Fmeta(y) is

Dmeta(y) 4 V(y)(V0+V1y−15
8 + · · · ) y Q+., (5.9)

where V(y) is defined in (3.50), and

V0=
s̄

2p
=0.216106... , V1=−

q2 s̄2

2
+

G̃3

4G̃1

% − 0.14. (5.10)

In TFFSA we actually study the system in finite-size geometry, with
the spatial compactification length R. In this situation the above stable
mesons Mi correspond to a series of finite-size energy levels Ei(R) which
asymptotically (as R Q .) behave as

Ei(R)=FR+Mi+O(e−
`3

2
M1R), (5.11)
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where F=F(m, h) is the vacuum energy density. Of course, there are no
resonance states at finite R. If h is sufficiently small, the ‘‘false vacuum’’
resonance of the R=. system is very narrow, and at finite R it manifest
itself as a peculiar pattern of ‘‘near-intersections’’ of the levels Ei(R), see
Fig. 6a in Section 6. The near-intersection of the levels Ei(R) and Ei+1(R)
occurs approximately at Ri, i+1=Mi/DF, where DF(m, h) is the same as in
(5.7), and between the two near-intersections the level Ei(R) approximately
follows the ‘‘resonance’’ linear law

Ei(R) % Re Fmeta(m, h) R for Ri − 1, i < R < Ri, i+1. (5.12)

This pattern (which was previously observed in ref. 49, in the the TCSA
study of IFT (1.1)), is clearly visible in Fig. 6a in Section 6. Calculation
presented in Appendix B shows that the separation between Ei(R) and
Ei+1(R) close to their mutual near-intersection follows the square-root law

Ei+1(R) − Ei(R) % mt2 =(mt)2 (R − Ri, i+1)2+
4CR
mt2s −

i

, (5.13)

where C=C(m, h) is the resonance ‘‘specific width,’’ t=(2s̄t)1/3, and the
constants s −

i are the derivatives of the function s(E), Eq. (B.16), taken at its
zeroes Ei. According to (B.17) and (B.19), these constants have the small-t
expansions

s −

i=
AiŒ(−zi)
Bi(−zi)

31+
zi

10
t2 −

19z2
i

1400
t4+O(t6)4 . (5.14)

Equation (5.13) will be used in Section 7.3 for the numerical determi-
nation of C(m, h) at small h.

6. NUMERICAL ANALYSIS

In the numerical analysis of the Hamiltonian (2.3) we used the techni-
caly simplest (albeit may be not optimal) truncation scheme based on the
notion of level. We define the level of the state (2.5a) (or (2.5b)) as a half of
the sum of absolute values of the half-integers ki (or the integers ni). At
m=0 this definition coincides with the standard notion of the level in
TCSA. The truncation level L is the maximal level of states admitted into
the truncated space. For the purposes of this paper we restricted our atten-
tion to the zero-momentum sector, i.e., the states with ; i ni or ; i ki equal
to zero. For a given truncation level, the Hamiltonian (2.3) was numericaly
diagonalized in this sector. We used different truncation levels ranging

Ising Field Theory in a Magnetic Field 553



from 10 to 12; the dimensionality of the truncated spaces then ranges from
487 for L=10 to 1186 for L=12. This way some number of lowest energy
levels Ei(R) was obtained for various real values of h, corresponding to g in
the interval [− 5:5], as well as for pure imaginary h, corresponding to y in
(3.37) ranging in the same interval.

6.1. Finite-Size Levels. Qualitative Picture

The qualitative pattern of the resulting finite-size levels Ei(R) is not
very sensitive to the truncation level (except for some close proximity of the
Yang–Lee point, see below), as long as R is not too large. Of course, higher
truncation levels allow for better accuracy in quantitative estimates of its
characteristics (energy density and masses). Also, as is usual with truncated
Hamiltonians, the truncation effects become more prominent for larger
values of R. In quantitative analysis we mostly used the data with
R |h|

8
15 < 6.

6.1.1. Real h

The patterns of the lowest finite-size energy levels Ei(R) for some real
g are shown in Figs. 6a–6c. In the range of R shown in these figures the
difference between the plots for L=10 and L=12 would not be visible.
Qualitatively, the patterns in Figs. 6a–6c are the same as were observed in
ref. 49 in the TCSA study of (1.1), where their interpretations in terms of
the particle spectra are discussed. In this case, we have just a few words to
add.

In full accordance with the McCoy and Wu scenario, (48) for sufficiently
large positive g (i.e., for T < Tc and small h) the field theory (1.1) contains a
large number of stable particles (‘‘mesons’’). At finite R, these particles
correspond to the energy levels Ei(R) which approach, at sufficiently
large R, the straight lines F(m, h) R+Mi, where Mi are the masses of the
mesons. This pattern of levels is clearly visible in the plot of Fig. 6a repre-
senting the case of g=2.2. For sufficiently large g the meson masses Mi are
in good agreement with (5.2) (see Fig. 5). The plot in Fig. 6a also shows a
characteristic pattern of ‘‘near intersections’’ of the meson levels with the
straight line Re FmetaR, which is the finite-size manifestation of the ‘‘false
vacuum’’ already mentioned in Section 5. As is discussed there and in
Appendix B, the openings at these near-intersections are related to the
imaginary part (5.6) of the ‘‘false vacuum’’ specific energy, see Eq. (5.13).
We will use this relation in Section 8 as a way to estimate the resonance
width at sufficiently large positive g.

As g decreases, the mesons with higher masses gradually disappear
into the ‘‘continuum’’ above the the stability threshold 2M1, where M1 is
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Fig. 6. Plots of several lowest energy levels Ei(R), i=0, 1, 2,... , at different g. (a) g=2.2.
Magnification in the corner shows the ‘‘near-intersection’’ of the levels E1(R) and E2(R).
(b) g=0.5. Three lowest excited levels E1(R), E2(R), E3(R) are seen to approach straight lines
(5.11) exponentially; these levels correspond to three stable mesons M1, M2, M3. The rest of
the levels correspond to scattering states. (c) g=−3.0. Only one stable particle remains.

the mass of the lightest particle (see Fig. 6b, where only three stable particle
levels are apparent). At the same time the resonance ‘‘level’’ becomes fussy,
in agreement with the expectation that its width parameter C grows. The
process of depletion of the ‘‘meson’’ spectrum continues as g decreases to
negative values. The third lightest particle disapears at g % − 0.14, and the
second one leaves the spectrum of stable particles at g=g2,

g2=−2.09(4). (6.1)
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The way these particles disapear is an interesting question which we hope
to address elsewhere. For g below g2 only one particle with mass M1 is left,
as is manifest in Fig. 6c. The g-dependence of the first three masses was
shown in Fig. 5. We postpone a detailed quantitative discussion of the
particle spectrum to future publication.

6.1.2. Pure Imaginary h

Much different patterns of the finite-size energy levels appear if one
takes h pure imaginary, which corresponds to g=ye

4pi
15 with real y.

Although in this case the Hamiltonian (2.3) is not an Hermitian operator, it
has an explicit symmetry

SHS=H†, (6.2)

where the operator S just flips the signs of all states in the R sector in
(2.5b). As the result, the eigenvalues of this Hamiltonian are either real or
come in complex conjugated pairs.

For sufficiently large negative y the ground state energy E0(R) of the
truncated Hamiltonian remains real in a wide range of R, including the
region where the linear behaviour (2.4) is already clearly visible. This is also
true for the first excited level E1(R), which quickly (i.e., exponentialy)
approaches the straight line FR+M1, i.e., it behaves as a one-particle state
with a real mass M1. The situation is exemplified in Fig. 7a, where the real
parts of the first few energy levels are plotted.

As y increases, the gap M1 becomes smaller (see Fig. 7b), and for y
above −2.43 a collision of the first two levels at some finite R=Rnose(y)
(the ‘‘nose’’) is clearly visible; at R > Rnose(y) the levels E0(R) and E1(R)
form a complex-conjugated pair, as is seen in Fig. 7c. When y furher
increases, the ‘‘nose’’ quickly gets shorter, and when it is short enough (as
in Figs. 8a–8b) it becomes evident that for large R ± Rnose the complex
conjugate levels E0(R) and E1(R) develop into the ‘‘straight lines’’ with
complex slopes, E0 Q FR, E1(R) Q FgR. We interpret this as the vacuum
state acquiring a complex energy density F (obviously, in this case there are
two ‘‘complex conjugate’’ vacua). Moreover, the next lowest levels E2(R)
and E3(R) eventualy collide and they too become a complex conjugate
pair, both then approaching similar straight lines, shifted by some complex
‘‘mass’’ M1, i.e., E2(R) Q FR+M1, E3(R) Q FgR+Mg

1 ; these levels are
naturaly interpreted in terms of the complex-mass particle-like excitations
over the corresponding vacua.

As y becomes larger the number of such complex-mass particles
increases. Higher energy levels form a rather complicated pattern. Their
interpretation in terms of particle scattering states (and even legitimacy of
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Fig. 7. Plots of several lowest energy levels Ei(R), i=0, 1, 2,... , at pure imaginary h, i.e., at
g=y exp(4pi/15) with real y. When a level becomes complex, only its real part is shown.
(a) y=−3.8. The three lowest levels E0(R), E1(R), E2(R) are real for all R |h|

8
15 ¥ [0; 6]. The

level E1(R) approaches the straight line FR+M1 exponentially; it corresponds to one-particle
state. (b) y=−2.5 (close to the Yang–Lee point Y0 % − 2.43). The three lowest levels remain
real for all R |h|

8
15 ¥ [0:6], but the gap between E0(R) and E1(R) narrows. (c) y=−2.4 (on the

other side of the YL point). The ‘‘nose’’ appears: E0(R) and E1(R) collide at
R=Rnose % 4.3 |h|−8/15 and become a pair of complex-conjugated levels at R > Rnose.

such interpretation) in general remains an open problem which we hope to
address in the future.

Appearence of complex F for y above the Yang–Lee point −Y0 is well
expected in view of the discussion in Section 3; F and Fg are just the values
of F(m, h) on two edges of the branch cuts in Fig. 1. We can say that the
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Fig. 8. The lowest energy levels Ei(R), i=0, 1, 2,... , at g=2.0 × e4pi/15. (a) Real parts of
Ei(R). (b) Imaginary parts of Ei(R). Two lower levels, E0, E1, collide at R=Rnose %

0.389 |h|− 8
15 becoming at larger R a complex-conjugated pair. They quickly approach straight

lines, whose slopes are interpreted as F and Fg. Similar collision of the next two levels, E2, E3,
occurs at R % 2.28 |h|− 8

15; they also develop into two complex-conjugated straight lines, with
the same slopes as F and Fg. The gap E2(R) − E0(R) approaches a complex constant M1,
interpreted as a complex mass (correspondingly, the gap E3(R) − E0(R) approaches Mg

1 ).

patterns in Fig. 7b and in Fig. 7c represent the situations at the opposite
sides of the Yang–Lee edge singularity, which is located some place in
between. Unfortunately (but not surprisingly), in the close proximity of this
critical point the results from the truncated Hamiltonians appear to be
more sensitive to the truncation level then elsewhere, especialy for larger
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from Eq. (3.9)

Fig. 9. The function C0(R)=6R[E0(R) − 0.54743 |h|
16
15 R]/p computed through the TFFSA

using different truncation levels L=10, 11, 12, at g=−2.4295 × e4pi/15. The dotted line is the
expected asymptotic value −ceff=−0.4. The dashed line represents the two leading corrections
written in Eq. (3.9) with a0=−4.2.
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values of R. In Fig. 9 we show the plots of the function C0(R) —
6R
p (E0(R) − F0R), with

F0 % 0.54743 |h|16/15, (6.3)

computed for different truncation levels, at y=−2.4295 (which we believe
to be very close to the Yang–Lee point −Y0). As the truncation level
increases it seems to develop the expected large-R behaviour (3.9).

6.2. Quantitative Analysis

The free energy F(m, h) was determined by measuring the slope of the
R dependence of the ground sate level E0(R) at sufficiently large R. There
are two obstacles (well known in TCSA) to a precise determination of this
slope. Theoretically, the linear behaviour (2.4) becomes exact for large
R ± M−1

1 , while at finite values of R finite-size corrections may be impor-
tant. Although the leading finite-size corrections are related to the masses
Mi of the stable particles by well-known formula (see, e.g., ref. 17)

E0(R)=RF(m, h) − C
i

Mi

p
K1(MiR)+O(e−2M1 R), (6.4)

where K1(x) is modified Bessel function, the subleading corrections depend
on the (generally unknown) scattering amplitudes, and in most cases it is
not clear how to take them into account. This makes it favorable to use
larger values of R, where these subleading finite-size corrections are less
significant. However, in practical calculations the ground-state energy
deviates from the linear behaviour (2.4) at large R as the result of the state
space truncation (the ‘‘truncation effects’’). Although this deviations are
too small to be visible in Figs. 6–8, they substantially reduce the precision
of quantitative analysis. The truncation effects bring an upper limit to the
values of R at which precise quantitative analysis can be made.

To reduce the truncation effects, the ground-state energy functions
E (L)

0 (R) computed with the truncation levels L=10, 11, 12 was extrapo-
lated to L Q .. The extrapolation was made by fitting the formula

E (L)
0 (R)=s0(R)+s1(R) L−s2(R) (6.5)

to the computed L dependence (at fixed R), via s0, s1, s2, and accepting
s0(R) as the extrapolated E0(R). Although this formula does not have
theoretical justification, the extrapolation procedure appears to work well
for all real as well as imaginary h, corresponding to |g| < 5, substancially
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improving the linear shape of E0(R) (e.g., for R ’ 20M−1
1 the deviation

from the linear behaviour is reduced by at least one order of magnitude).
The extrapolated function E0(R) was then subjected to a finite-size

analysis. The masses Mi of the stable particles were estimated from the
higher levels Ei(R), and the expected leading finite-size corrections (the
sum in (6.4)) were subtracted from E0(R).

For negative g in Table IV we subtracted all one-particle corrections
and then used the function f0R+f1 exp(−2 f2R) to fit (around R % 4M−1

1 )
the remaining part via f0, f1, f2, with the best-fit value of f0 accepted as
F(m, h). For positive g we subtracted instead the corrections from the two
lightest particles and then used g0 R+g1K1(g2R) to fit the resulting curve
(around R % 7M−1

1 ). The overall quality of this analysis was controlled by
observing the proximity of the best-fit value of f2 and g2 to the expected
values 2M1 and M3, respectively (the deviation varied with g, but never
exceeded 20%).

The above procedure of the finite-size analysis is rather labor consum-
ing. In order to obtain estimates of the coefficients Fn we used similar pro-
cedure in the small interval [−0.64 : 0.64] around zero but we only sub-
tracted the lighest particle correction before fitting to g0R+g1K1(g2R)
around R % 8M−1

1 .

Table IV. Numerical Values of F(g) at Selected Real Points. The First Column

Shows Direct Data Obtained Through TFFSA, as Explained in Section 6.2; We Believe

These Numbers Are Exact to Six Significant Digits or Better. The Results from High-T

and Low-T Dispersion Relations, Eqs. (8.1) and (8.9), with the Use of Approxima-

tions (8.2) and (8.14), Are Presented in the Second and the Third Columns, Respec-

tively. The Last Column Contains Results from Extended Dispersion Relation,

Eq. (4.8), with Approximation (8.21) Used

From From high-T From low-T From extended
F(g) TFFSA data disp. relation disp. relation disp. relation

F(−5) −0.1092101 −0.1092092 — −0.1088626
F(−4) −0.1592682 −0.1592643 — −0.1589421
F(−3) −0.2529928 −0.2529887 — −0.2527417
F(−2) −0.4413450 −0.4413249 — −0.4412136
F(−1) −0.7839665 −0.7839668 — −0.7839576
F(0) −1.1977330 — — −1.1977320
F(1) −1.3898410 — −1.3898417 −1.3898063
F(2) −1.4930558 — −1.4930566 −1.4929849
F(3) −1.5642732 — −1.5642736 −1.5641727
F(4) −1.6188506 — −1.6188510 −1.6187275
F(5) −1.6632483 — −1.6632485 −1.6631076
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We believe that the data for F(m, h) obtained through this procedure
are exact to six significant digits.

Finally, massive data used in Fourier analysis in Section 8.2.1 was
obtained using somewhat simplified procedure, in which only the first term
in the sum (6.4) was taken into account, i.e., no subtraction was performed.
Specifically, the function g0R+g1K1(g2R) was fitted to the extrapolated
data E0(R). This procedure produces the estimates which agree with the
above more elaborate analysis to five significant digits.

Similar simplified analysis was used in the case of pure imaginary h. In
this case, for y > −Y0, complex values of the fitting parameters g0, g1, g2

were admitted. Exceptionally, for the values on the side y < −Y0 presented
in Table V, we subtracted the leading finite size correction and then fitted
to g0R+g1 exp(−g2R). Special was the vicinity of the critical point −Y0.
With y approaching this point the values of g2 decreased and overall
quality of the fit deteriorated. Of course this is not surprising since near the
critical point the correlation length M−1

1 is diverging, pushing the domain
of validity of the expansion (6.4) to R Q ., where our analysis would be
severely spoiled by truncation effects. Nonetheless, it was possible to obtain
reasonably accurate data (at least four digits) for Fimh(y) with y < −2.43.
On the other side of the critical point, for y > −Y0, the situation is compli-
cated by the rapid growth of the ‘‘nose.’’ In this region we could obtain
similar accuracy only for −2.1 < y, and our data for −2.3 < y < −2.1 may
be less accurate. In close vicinity of the critical point a finite-size analysis
based on the effective action (3.7) would be more appropriate, and we are
planning to apply it in the future.

Table V. Numerical Values of Fimh(y), Eq. (3.37), at some Real y <−Y0. Direct Data

from TFFSA (Good to Four Digits or Better, See Section 6.2) Are in First Column, and

Results from High-T Dispersion Relation with (8.2) in Second Column

Fimh(y) From TFFSA data From high-T disp. relation

Fimh(−5.0) 0.1116003 0.1115969
Fimh(−4.5) 0.1349420 0.1349380
Fimh(−4.0) 0.1674520 0.1674469
Fimh(−3.5) 0.2155503 0.2155426
Fimh(−3.0) 0.2946233 0.2946092
Fimh(−2.5) 0.4729294 0.4728305
Fimh(−2.4295) — 0.5475373
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7. NUMERICAL RESULTS

7.1. Scaling Function. Real h

Our results for F(g) at real values of g are shown in Fig. 10 (see also
Table IV for some numerical values). As expected (see Section 3), the func-
tion appears to be perfectly smooth everywhere exept for the point g=0,
where the singularity of the form −g2 log g2/8p can be observed. The first
few coefficients of the g-expansion (3.29) can be readily extracted from this
data. After subtracting the above singular term, we have fitted polynomials
of various degree to the data in the interval [ − 0.64 : 0.64]. The fit appears
stable for the first eight coefficients, F0 to F7. The resulting estimates of
these coefficients are displayed in Table III. The estimates for the coeffi-
cients F0 and F1 are very close to the predictions (3.31) and (3.33); this
result for F1 can be viewed as numerical verification of the exact expecta-
tion value OEP|y=0 obtained in ref. 43. It turns out that the first few terms
of the series (3.29) provide rather good approximation for F(g) with
|g| M 2, as shown in Fig. 10. Comparison with the known terms of the
expansions (3.35) and (3.36) is also presented in that figure.

7.2. Scaling Function. Imaginary h

Our results for Fimh(y) are shown in Fig. 11, where a singularity at
y=−Y0,

Y0 % 2.4295, (7.1)
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Fig. 10. The scaling function F(g) for real g (solid line). Dashed lines show how this func-
tion is approximated by few leading terms of the expansions (3.29), (3.35), and (3.36).
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Fig. 11. The TFFSA data for the function Fimh(y), Eq. (3.37) (empty and full bullets). The
imaginary part Im Fimh(y) vanishes for y < −Y0. Various dashed lines show how this function
is approximated by its expansions (3.29), (3.35), and (3.36). I6 and I7 are the first seven
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tribute to the real (imaginary) part). Finally, HT12 is the plot of six leading terms (including
G12 term) of the low-T expansion (3.35). In all cases the coefficients are taken (or computed)
from Tables I, II, and III.

is clearly visible. The function Fimh(y) is real for y < Y0, and it develops an
imaginary part for y > Y0. A comparison with the first few terms of the
expansions (3.35) and (3.36) is also made in the Fig. 11. We observe that
the first six terms of (3.35) approximate Fimh(y) very well for y < −2.7.
This is not surprising since, according to our discussion in Section 3, the
expansion (3.35) is expected to converge for all y < Y0. In this figure we
also compare the data with the first eight terms of the expansion (3.43)
(and similar expansion for the real part of Fimh(y)). One can notice that
these expansions provide a remarkably good approximation of Fimh(y) for
|y| < 2. We take this as an indication that it is the Yang–Lee singularity at
g=−Y0e ± 4pi

15 which determines the domains of convergence of the small g

expansion (3.29); in other words, it supports our expectation that the func-
tion F̃(g) is analytic in the whole disk |g| < Y0.

Our data agree with the expected form (3.40) of the singularity at
y=−Y0. The imaginary part of Fimh(y), Eq. (3.39), receives no contribu-
tion from the regular part A(y) in (3.40), and therefore it should exhibit
the singular behaviour (3.40) most prominently. The log-log plot of this
function in Fig. 12a clearly confirms the value 5/6 of the exponent in (3.40)
predicted in ref. 30. The ratio Im Fimh(y)/(y+Y0)

5
6 is shown in Fig. 12b.
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Fig. 12. TFFSA data for Dimh(y), Eq. (3.39). (a) Log-log plot of Dimh(y) (bullets). The
dashed line has slope 5/6. (b) Ratio Dimh(y)/(y+Y0)5/6 (bullets), and the graph of
D <

imh(y)/(y+Y0)5/6, with D <
imh(y) from Eq. (8.3) (dashed curve).

This plot reveals the ‘‘fine structure’’ of this function near the
Yang–Lee branching point, which should be attributed to the subleading
singular terms in (3.40). Our data is not very precise when taken close to
the critical point −Y0 (see Section 6), and allow for only rather rough
estimate of the leading coefficients in the expansion (3.40), (3.41),

B0=−1.37(2), B1=−0.75(5), C0=0.38(7), (7.2a)

A0=0.5474(3), A1=1.06(4), A2=0.3(1). (7.2b)

These estimates are obtained by fitting a few leading terms of (3.41) to the
data in various intervals of y between −2.2 and −1.5; the error reflects the
dependence on the fitting interval as well as on the number of the terms
used. From (7.2a) we can obtain an estimate of the most important
parameters in (3.8a), (3.8b),

l1=3.10(6), a0=−4.9(9). (7.3)

Independent (and somewhat better) estimate of the parameter a0 can
be obtained directly from the finite-size ground-state energy E0(R) at the
Yang–Lee point y=−Y0. By fitting the expected form (3.9) to the data in
Fig. 9 in various regions between R=1.7 |h|− 8

15 and R=2.8 |h|− 8
15 we found

a0=−4.4(4), (7.4)

(where again the error estimate is from the dependence on the fitting
region). The quality of the fit is also shown in Fig. 9.
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7.3. False Vacuum Resonance Width

As was discussed in Section 5, the finite-size behaviour of the meson
levels close to their ‘‘near-intersection’’ points is related through (5.13) to
the width C of the false vacuum resonance, and can be used for numerical
determination of Dmeta(y). Presently, there are two limitations to this
approach. First, at small h the ‘‘near- intersections’’ occur at large R, where
truncation effects are more significant. In our calculations, a satisfactory
stabilization of the difference E2(R) − E1(R) at L=12 was achieved only
for g < 3.5. For larger g the situation can be somewhat improved by adding
a number of two-quark states of higher levels (see below). On the other side
of large h, a limitation comes from our unsufficient knowledge about the
coefficients s −

i in (5.13); the best we have at the moment is the first three
terms (5.14) of their small-h expansions. Nevertheless, one can note that
these three terms were obtained in Appendix B within the same approxi-
mation as the three correction terms in the large-g expansion of the meson
masses, Eq. (5.2). Good agreement of the last expansion with the data at
g > 1.7 makes us believe that reasonably accurate estimate of the function
Dmeta(g) can be obtained within this expansion in the same region.

We have performed this analysis in the range 1 < g < 4.5 using the
separation E2(R) − E1(R). The eigenvalues E1(R), E2(R) were computed in
‘‘two-quark extended’’ truncated space (2.5) with L=12. Namely, besides
all states in (2.5) with L [ 12, the two-quark states a†

ka†
−k | 0PNS and

a†
na†

−n | 0PR with the levels 12 < L [ 100 were also admitted. While such
extention does not bring any appreciable difference for g [ 3.5, it does
substantially improve the results for 3.5 < g < 4.5. For all values of g in the
range 1 < g < 4.5 the separation E2(R) − E1(R) was in excellent agreement
with the expected square-root behaviour (5.13), and it allowed us to esti-
mate the values of the width parameter C. The results for the ratio
Dmeta(y)/V(y) (where Dmeta(y) is related to C through (5.6), and V(y) is
the function (3.50)) are shown in Fig. 13. The ratio shows a clear tendency
to approach at large y the expected value V0=0.2161... . Moreover, when
all three terms in (5.14) are taken into account, for y > 2.3 it agrees well
with the first correction term in (5.9). By direct fitting the expansion (5.9)
to this data we have obtained the following estimates of the coefficients
there,

V0=0.2161(4), V1=−0.136(4). (7.5)

In ref. 42 an attempt was made to determine the h Q 0 behaviour of C

using two-quark approximation for the resonance wave function. While
correctly reproducing the exponent in (3.18), this calculation yields
somewhat greater pre-exponential factor ps̄h/18 (which would lead to

Ising Field Theory in a Magnetic Field 565



0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

1 1.5 2 2.5 3 3.5 4 4.5 5

D
m

et
a 

/ V
(y

)

y

Fig. 13. Data for the ratio Dmeta(y)/V(y) obtained through the false vacuum resonance
width analysis (Section 7.3), using Eq. (5.13) with three leading terms in Eq. (5.14). The data
obtained using ‘‘two-quark extended’’ truncation space with the truncation level L=12 is
shown as empty bullets ( í ). The data obtained using two-quark states only is shown as full
bullets (N). The solid line is the plot of Eq. (8.11) and the dotted line is the value V0=0.2161.

V0=ps̄/18 % 0.237 in our notations). As we explain in Appendix B, the
two-quark approximation breaks down when the quarks are deep inside
the classically unaccessible region, and therefore it is not justified in the
resonance wave function calculation even at h Q 0, even though in this
limit the resonance decay goes predominantly through the two-quark
channel.5 To verify this being the reason for the above discrepancy, we

5 To avoid misunderstanding let us stress here that in Appendix B we apply the two-quark
approximation to the wave function in the ‘‘meson domain,’’ not deep under the barrier.
Instead of solving the problem in the last region, we take a phenomenological approach
based on the Breit–Wigner formula (B.23).

have repeated the calculation described in this section, this time with the
eigenvalues E1(R), E2(R) computed purely within the two-quark approxi-
mation. Specifically, in computing these eigenvalues, only two-quark states
with the levels [ 100 were admitted. As is seen in Fig. 13, the ratio
Dmeta(y)/V(y) obtained this way is hardly consistent with the correct
y Q . asymptotic value 0.2161... .

8. ANALYTICITY

8.1. High-T Domain (HTW in Fig. 4)

In principle, our approach allows for direct computation of the func-
tion F(g) at complex values of g in the wedge HTW in Fig. 4. However,
this data would be redundant because in view of the analytic properties of
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the scaling function discussed in Section 3, the values of F(g) can be com-
puted through the dispersion relation (3.3) once the function Dimh(y) —

Im Fimh(y) is known. This dispersion relation applies to the function F(g)
with g in the wedge HTW in Fig. 4, where it can be rewritten as

F(g)=−
15g2

4p
F

Y0

0

Dimh(−y) y
3
4 dy

y
15
4 +(−g)

15
4

. (8.1)

Since accurate direct data on Dimh(y) in the vicinity of the Yang–Lee point
(−Y0 < y < 2.1) is not available at this moment, some extrapolation is
needed in order to perform the (numerical) integration in (8.1). We have
tried various extrapolations, and the results of integration in (8.1) usualy
agree with the our direct data on F(g) to at least three significant digits.
The best results were obtained with the following approximation

Dimh(y)=˛D <
imh(y) for − Y0 < y < −1.57;

D >
imh(y) for − 1.57 < y < 0,

(8.2)

where

D <
imh(y)=−

1
2

B̄0(y+Y0)
5
6+

1
2

B̄1(y+Y0)
11
6 +

`3

2
C̄0(y+Y0)

5
3, (8.3)

with

B̄0=−1.3693, B̄1=−0.74378, C̄0=0.42446, (8.4)

and D >
imh(y) is just the first eight terms of the y-expansion,

D >
imh(y)=F̄0+F̄1 y+ · · · +F̄7y7. (8.5)

with F̄n related to Fn from the Table III as in (3.44). Here we accept (7.1)
as the value of Y0, while the coefficients B̄0, B̄1, C̄0 in (8.4) are obtained by
exact matching (8.3) with (8.5) at y=−1.57 (up to the first derivative), and
fine-tuning the remaining one parameter to achieve better agreement with
the data. Note that these coefficients agree with the estimate (7.2a) within
the stated accuracy. However, (8.4) should not be considered as better
estimates of the coefficients of the expansions (3.41b)–(3.41c), since (8.3)
ignores higher subleading terms in (3.40). The quality of the approximation
(8.2) is demonstrated in the Tables IV and V, where the results from (8.1)
are compared to our data, both for real g < 0 and g=y e

4pi
15 , y < −Y0. We

also presented in Table I the results for the first few coefficients G2n in (3.1)
obtained through the dispersion relation (3.5) with the use of (8.2). The
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agreement with the previously known estimates is reasonable, baring in
mind relatively low quality of the approximation (8.3); we believe it will
improve once the structure of singular expansion (3.40) is understood in
greater quantitative details.

8.2. Low-T Domain (LTW in Fig. 4)

8.2.1. Fourier Analysis

Numerical analytic continuation into this domain was performed using
Fourier analysis in the logarithmic variable log g. According to (3.29) and
(3.36) the function g

13
16 (F(g) − G̃1 g

1
8) decays sufficiently fast (exponentially

in the above logarithmic variable) both at g Q 0 and at g Q .. Its loga-
rithmic Fourier transform

Y(w)=F
.

0
g

13
16

− iw (F(g) − G̃1g
1
8)

dg

g
(8.6)

was evaluated numerically from our data for F(g). In principle, using this
function the values of Flow(g), Eq. (4.6), along the rays g=ye ia, with real
y ¥ (0, +.), can be computed as the inverse Fourier transforms

Flow(ye ia)=G̃1 e i a

8y
1
8+e−i 13

16
ay−13

16 F
.

−.

e−awY(w) y iw dw

2p
. (8.7)

The function Flow(g) is analytic along the ray provided the integrand in
(8.7) decays faster then any power of w. The standard analyticity assump-
tion for the wedge LTW in Fig. 4 is equivalent to the statement that
|Y(w)| < exp( − 8

15 p |w|) for |w| Q .. Of course it is not possible to achieve
a rigorous conclusion about true large w asymptotic of this function using
our limited-precision data. For w > wmax ’ 5.5 the numerical Fourier
transform Y(w) is dominated by a small ( ’ 10−6) random-looking function
which should be interpreted as the Fourier transform of the errors asso-
ciated with our numerical data for F. For this reason the numerical
Fourier transform Y(w) hardly carries any usefull information beyond the
window |w| < wmax. At the same time the function Y(w) inside this window
appears to be decaying significantly faster then the above exponential,
which is consistent with the standard analyticity assumption. One can
actually use (8.7) to compute this function in LTW with reasonable
accuracy. Obviously, in order to do that one has to introduce some cut-off
to eliminate the high frequency part |w| > wmax of the integral (8.8) domi-
nated by the noise; it is expected that only fine details of the resulting
function would depend on the specifics of the cutoff procedure. As an
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Fig. 14. The scaling function Flow(g) along the axis g=ye
ip
3 obtained through numerical

analytic continuation (Section 8.2.1). Real and imaginary parts of e−2pi
3 Flow(ye

ip
3) are shown.

The y < 0 part of this axis lays inside the shadow domain SHD in Fig. 4, close to the axis OA.
The data here is not very accurate. Nevertheless, an anomaly around y 4 − 2.5 (presumably
associated with the proximity of the YL singular point) seems to be developing.

example (which will turn out to be usefull in our analysis in Section 8.3)
we show in Fig. 14 the shape of the function Flow(g) along the ray g=ye ip

3,
y > 0, computed this way. Any changes induced by changing the cutoff
procedure are by far too small ( < 10−4) to be visible in this plot.

More interestingly, one can apply the relation

Dmeta(y)=−F
.

−.

y−13
16

− iw cosh(8pw/15) Y(w)
dw

2p
(8.8)

(which is equivalent to the dispersion relation (3.15)) to compute the func-
tion (3.46). As expected, the resulting inverse Fourier transform (8.8) shows
rapid decay at large y (see Fig. 15a). However, instead of monotonous
decay (3.49), the cutoff integral (8.7) exhibits small oscillations whose shape
is very sensitive to the details of the cutoff procedure. Therefore, we con-
sider the results for the function Dmeta(y) obtained this way only reliable
for y < 2.0. To see how these results comply with the expected asymptotic
form (5.9) we have plotted in Fig. 15b the ratio Dmeta(y)/V(y), where V(y)
is the exponent (3.50). The error bars in this plot represent the spread of
the data obtained with different cutoff procedures. From (5.9), this ratio is
expected to approach the constant 0.2161... as y Q .. As is seen from the
plot, the ratio reaches a minimum % 0.153 at y % 1.15, and then shows a
tendency to increase towards the expected value.

Unfortunately, as was explained above, for y > 1.9 the data obtained
by this method becomes unreliable, and presently neither the true large y
asymptotic nor the way it is approached can be established on their basis.
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Fig. 15. (a) The function Dmeta(y), Eq. (3.46), obtained through numerical analytic contin-
uation in Section 8.2.1. (b) The ratio Dmeta(y)/V(y) (where V(y) is defined in Eq. (3.50)). The
data from numerical analytic continuation (Section 8.2.1) (shown as error bars) vs. the data
from resonance width analysis (Section 7.3) (shown as empty bullets). The solid curve is the
plot of Eq. (8.14).

But fortunately, the analysis of Section 7.3 apparently provides a compli-
mentary set of data. We replot in Fig. 15b the data from the resonance
width analysis (identical to those in Fig. 13) to demonstrate its agreement
with the data obtained by the Fourier analysis.

In principle, one could try to use this numerical Fourier transform
Y(w) to continue further, into the shadow domain, by taking |a| > 8p/15 in
(8.7). We found that while for |a| < 3p/5 the intergal in (8.7) still receives
dominating contribution from w well within the window |w| < wmax (and
hence is not too sensitive to the cutoff procedure), for larger a the domain
around wmax becomes more significant. The result of such computation with
a=−2p/3 is shown in the left-hand side of Fig. 14; its accuracy is hardly
better then 10−2, and may be worse. For |a| > 2p/3 the results are too sensi-
tive to the cutoff procedure to be taken seriously. In other words, at present
the accuracy of our direct data about Flow(g) is not sufficient to support (or
unvalidate) analyticity of this function in the whole of the shadow domain.
In Section 8.3 later we use another approach, based on the extended disper-
sion relation, Eq. (4.8), to verify the extended analyticity.

8.2.2. Low-T Dispersion Relation

According to (3.15), in the low-T wedge −8p/15 < arg(g) < 8p/15
(the domain LTW in Fig. 4) the scaling function F(g) is represented in
terms of the function Dmeta(y) as

F(g)=G̃1g
1
8 −

15g−7
4

8p
F

.

0

Dmeta(y) y−9
8 dy

y−15
8 +g−15

8

. (8.9)
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It is interesting to check how the above information about Dmeta(y) agrees
with our direct data on this scaling function. Inspection of the plot in
Fig. 15b shows that the function Dmeta(y) is well approximated by the first
eight terms of its power series expansion (3.47), i.e., by the polynomial

D <
meta(y)=D0+D1 y+ · · · +D7y7, (8.10)

whith the coefficients Dn computed from Fn’s in Table III, all the way up
to y % 1.1. This plot also shows that the above large-y approximation,

D >
meta(y)=(0.2161 − 0.136 y−15

8 ) V(y), (8.11)

seems to provide rather accurate approximation of this function for
y N 2.5. The two curves corresponding to (8.10) and (8.11) intersect at
y % 1.59. We have checked that even if one just takes (8.10) and (8.11) as
the approximations for Dmeta(y) at y < 1.59 and y > 1.59 respectively, the
dispersion integral (8.9) reproduces correctly at least four significant digits
when compared with our direct data at real positive g. Of course such
accuracy is related to the fact at y ’ 1.59 the function Dmeta(y) is already
rather small. In fact, much better approximation can be achieved if one
uses some interpolation between (8.10) and (8.11) in the intermediate
region. We have obtained very good results with the fifth-order polynomial
interpolation

D interp
meta (y)=[P0+P1(y − y1)+ · · · +P5 (y − y1)5] V(y), (8.12)

with y1=1.1 and the coefficients P0,..., P5 fixed by the conditions that
(8.12) matches smoothly (up to the second derivative) the approximations
(8.10) and (8.11) at y=1.1 and at y=2.72, respectively,

P0=0.1532863, P1=0.0002611, P2=0.0499557,

P3=−0.0209331, P4=−0.004408, P5=0.002672.
(8.13)

The dispersion integral (8.9) with

Dmeta(y)=˛D <
meta(y) for 0 < y < 1.1

D interp
meta (y) for 1.1 < y < 2.72

D >
meta(y) for 2.72 < y < .

(8.14)

reproduces our direct data very accurately (with six significant digits, i.e.,
essentially within the estimated accuracy of the direct data), as is demon-
strated in Table IV. In this computation we have used the exact value
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(3.12) of the coefficient G̃1 in (8.9), and again the value (7.1) of Y0 was
assumed.

The approximation (8.14) can be also used to estimate the coefficients
G̃n of the assymptotic expansion (3.11). It follows from (3.13) that

G̃n=(−)n+1 15
8p

F
.

0
D(y) y

(15n − 24)
8 dy for n > 1. (8.15)

Moreover, the coefficient G̃1 itself must coinside with the integral

G̃1=
15
8p

F
.

0
(Dmeta(y) − D0) y−9

8 dy, (8.16)

lest analyticity of F̃(g) at g=0 be violated. With our approximation (8.14)
the integral (8.16) reproduces the coefficient G̃1 almost exactly (if fact, we
have used this as a condition in choosing the interpolation interval in
(8.14)), and few higher coefficients obtained through (8.15) are compaired
with previous estimates in Table II.

8.3. Extended Dispersion Relation

Equipped with the results in Sections 8.1 and 8.2, we made a prelimi-
nary analysis of analyticity in the shadow domain in order to validate the
extended analyticity conjecture formulated in Section 4. If one assumes the
extended analyticity, the estimates in Sections 8.1 and 8.2 make it possible
to actually reconstruct, with reasonable precision, the behaviour of the
function F(g) along the shadow side of the Yang–Lee branch cut in Fig. 4,
thus finding an approximation for the discontinuity function

D(y)=iFimh(−y) − ie−i 8
15 pFlow(ye−i 11

15 p) (8.17)

which enters the extended dispersion relation (4.8); the expression (8.17) is
a simple consequence of (4.3) and (4.1). The extended analyticity is then
verified by checking this dispersion relation against direct data.

Let us note that, on one hand, the results of Section 8.2 allow one to
find the large-y asymptotic form of the function Flow(ye−i 11

15 p). Indeed, the
second (analytic) form of the Eq. (3.46) which defines Dmeta(y) also defines
its analytic continuation to complex values of its argument. The extended
analyticity is equivalent to the statement that Dmeta(z) is analytic in the
wedge −p/5 < arg(z) < p/5. Under this assumption, it follows from (3.46)
that

Flow(ye−i 11
15 p)=e−i 32

15
pFlow(ye

ip
3 )+2ie−i 16

15
p Dmeta(ye−ip

5 ). (8.18)
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For real positive y, this equation expresses the desired values of Flow(g) on
the shadow side of the branch cut in terms of its values well inside the
domain LTW in Fig. 4, and also through the analytic continuation of the
function Dmeta(y). The first term is already under good analytic control, see
Section 8.2.1. In fact, for sufficiently large y the function Flow(y e

ip
3) is

approximated very well by first few terms of its asymptotic expansion
(3.36), as illustrated in Fig. 14. Specifically, for y > 3.0 the first twelve
terms of this expansion yield an accuracy better than ’ 10−4. On the other
hand, the large-y behaviour of the second term in (8.18) follows from the
asymptotic law (5.9). With this, Eq. (8.18) yields approximation for the
second term in Eq. (8.17), valid at sufficiently large y. This readily transla-
tes into corresponding large-y approximation for the function D(y), since
the large-y behaviour of the first term in (8.17) follows from (3.38b) and
(3.1). Finaly, one can check that for y > 3 the accuracy of at least ’ 10−4

can be achieved by taking the first six terms (i.e., including G12 term) of the
expansion (3.1). Therefore the following formula

D(y) % D > (y)= C
12

k=1
e−ip(k − 1)

2 (Gk − e−ipk
8 G̃k) y

16 − 15k
8

+2(V0+V1e
3pi
8 y−15

8 ) y
1
8 exp 3 − me−3pi

8 y
15
8 +

3pi
8
4 (8.19)

is expected to approximate the discontinuity function well for sufficiently
large y. In (8.19) m stands for p/2s̄, and it is understood that G2n+1=0.

On the other hand, when y is close to Y0 the relation (4.2) is usefull.
The approximation (8.3) for Dimh(y) then suggests the following approxi-
mation

D(y) % D < (y)=y2/4 − h(y − Y0) 11
2

B̄0e−i 5p

6 (y − Y0)
5
6+

1
2

B̄1e−i 5p

6 (y − Y0)
11
6

−
`3

2
C̄0e−i 5p

3 (y − Y0)
5
32 , (8.20)

which is expected to be valid at y 4 Y0. In (8.20) h(x) is the step function.
The plots of (8.19) and (8.20) are shown in Fig. 16. In this plot the

numerical values (8.4) of the coefficients in (8.20) are taken. Also, the coef-
ficients V0 and V1 in (8.19) are identical to those in (8.11), and the coeffi-
cients Gk and G̃k are taken from the Tables I and II. In fact, contributions
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of the terms with k > 5 in the sum in (8.19), as well as the differences in the
choice between the columns in that tables, are too small to be visible in this
plots. One can see that the approximations (8.19) and (8.20) match each
other very well in the intermediate region of y around 3. This match itself
can be viewed as a support to the extended analyticity conjecture. Even
more convincing result is obtained by evaluating the extended dispersion
relation (4.8) with the use of these approximations. We have evaluated the
integral (4.8) with

D(y)=˛D < (y) for 0 < y < 3
D > (y) for 3 < y

(8.21)

for some real values of g. In this calculation specific numerical values of the
coefficients G2n from the second column in Table I and G̃k from the second
column in Table II, as well as the values (8.11) of V0, V1, were used. The
results for the function F(g) are compared to our direct data in Table IV.
Also, the first coefficients Fn obtained through (4.10), within the same
approximation, are presented in Table III. Although the agreement is not
very accurate (the values of F(g) agree with the direct data with only four
digits, which is well below the estimated accuracy of the latter), we take it
as a strong support of extended analyticity. The relatively low accuracy
should probably be attributed to low quality of the approximation (8.20);
we believe it would improve when better estimates of the coefficients in
(3.41b)–(3.41c) are obtained, and higher subleading singular terms in (3.40)
are included.
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Fig. 16. Plots of real and imaginary parts of D < (y), Eq. (8.20) (shown as solid lines), and
D > (y), Eq. (8.19) (dashed lines).
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9. DISCUSSION

In this work we have used numerical data obtained by TFFSA to
study the scaling function F(g) associated with the Ising model free energy
in its critical domain. We estimated some parameters of this function,
including location of the Yang–Lee singularity (7.1) and leading amplitudes
(7.2a), (7.2b) of associated singular expansion (3.40). We also examined the
analyticity of the scaling function. Our analysis confirmed the standard
analyticity assumption (see Section 3), and we have found strong evidence
in support of the ‘‘extended analyticity’’ conjectured in Section 4. Here we
would like to explain why we regard proving (or invalidating) this extended
analyticity as an important issue.

As is known, in the classical theory of phase transitions, which does
not incorporate fluctuational effects, the Langer’s singularity of the low-T
free energy at H=0 is not present. Instead, analytic continuation of the
classical low-T free energy shows a branch-cut singularity at some finite
negative value of H, H=−HSP, known as the ‘‘spinodal point.’’ This sin-
gularity appears because at sufficiently large H (|H| > HSP) the metastable
state becomes unstable against classical decay. When fluctuations are taken
into account the free energy becomes singular (albeit weakly singular) at
H=0, since the metastable phase is always prone to decay through
nucleation. But what happens to the spinodal singularity? There are con-
vincing arguments (see ref. 50) to that in the presence of fluctuations the
(analytic continuation of the) free energy cannot have singularities at real
negative H. In our opinion, the most plausible possibility is that in fluc-
tuational theory the spinodal singularity does not just disappear but
instead gets pushed under the Langer’s branch cut, as is shown schemati-
caly in Fig. 2. In other words, the nearest singularity under the Langer’s
branch cut could be associated with the ‘‘ideal limit of metastability,’’ (51)

where a transition from a decay through nucleation to faster ‘‘classical’’
mechanism of decay takes place. The transition can be more or less
expressed depending on how far under the cut the singularity is located.
The above speculation is made under assumption that the analytic contin-
uation of the free energy is a quantity at all relevant to thermodynamics of
the metastable state, even away from the domain of vanishingly small H.
It also ignores all possible kinetic aspects of the problem, certainly impor-
tant in realistic situations. Nontheless, it was one of the motivations for
the presented study of analyticity under the branch cut in Fig. 2. The
‘‘extended analyticity’’ proposed in Section 4 is the statement that the
nearest singularity under this branch cut is identical to the Yang–Lee sin-
gularity in Fig. 1. In these terms, the ‘‘true spinodal’’ is the Yang–Lee
singularity (viewed from the shadow side, as in Fig. 4).
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Our analysis concerned explicitly with the D=2 system. In this case
the Yang–Lee singularity turns out to be located relatively far under the
branch cut. The phase of tSP in Fig. 2 (which is related to the angular size
of the ‘‘shadow domain’’ in Fig. 4) is 3p/8. However, on a formal level, it
is not difficult to extend the analysis of Section 3 to any 1 < D < 4. In this
generic case the angular size h of analogous shadow domain can be
expressed in terms of the standard Ising model critical exponents as

h=p −
3p

2
1

2 − a − b
. (9.1)

It follows from what we know about the D-dependence of the Ising
critical exponents (see, e.g., ref. 52) that when D increases from 2 to 4 the
angular size of the ‘‘shadow domain’’ decreases, and goes to zero as the
critical exponents approach their classical values at D=4. A simple esti-
mate shows that at D=3 this angular size is % 0.04p. If similar ‘‘extended
analyticity’’ assumption could be validated in this case, one should expect
the effect of the Yang–Lee singularity being quite prominent at real nega-
tive H, at least in the critical domain T Q Tc. Unfortunately, at the moment
we do not see any practical way to check this assumption away from the
D=2 case.

Even in the D=2 case many issues call for refinement. First, although
the extended dispersion relation did check in Section 8 rather convincingly
with present data about the discontinuity (8.17), the agreement in Table IV
is not too precise, and hence very weak singularities in the shadow domain
are not excluded. Much better knowledge about the ‘‘fine-structure’’ of the
Yang–Lee singularity (in particular, better estimates of the coefficients of
the expansions (3.41b), (3.41c)) would be usefull in order to establish the
extended analyticity ‘‘beyond any reasonable doubt.’’ We hope to make
progress in this direction in the future. We also want to stress here that
even that would not settle the question of analytic properties of the scaling
function completely. What one should expect when going under the
Yang–Lee branch cut in Fig. 4 from the shadow domain? This and related
questions require at least some understanding of the physics governing the
‘‘shadowy side’’ of the Yang–Lee edge singularity.

Let us also mention some possible further developments, not related
directly to the free energy, which we hope to address in the future:

(i) Analytic properties of the correlation length (defined as inverse
mass M1), can be studied along the same lines. We expect associated
scaling function to enjoy similar extended analyticity.
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(ii) Detailed quantitative study of the IFT (1.1), viewed as the par-
ticle theory, is possible using TFFSA. This is a beautifull model of quark
confinement, simple but rich in phenomena. (48)

(iii) Physical interpretation of the IFT with pure imaginary h is a
particularly intriguing question. Even the qualitative pattern of the higher
finite-size energy levels Ei(R) in this case is yet to be understood.

We would like to stress here that in this work we are concerned only
with the leading singular term Fsing(T, H) of the Ising free energy, which is
governed by the field theory (1.1). Subleading singular terms appearing in
the lattice Ising model, and convergence of associated singular expansion,
are important separate questions which are not addressed here. Possible
subtleties in such expansion are discussed in interesting recent papers. (53–55)

APPENDIX A

Here we present a simple derivation of the finite-size matrix elements
(2.12) using the symmetries of the ‘‘doubled’’ Ising field theory with h=0.
This derivation is one of the results of ref. 56, where these symmetries are
exploited to a greater extent (in particular, the nonlinear differential equa-
tions of ref. 8 are shown to be a consequence of these symmetries).

Consider two copies of the free-fermion system (2.2). We will use the
subscripts a and b to distinguish between the fields corresponding to these
copies. Thus, (ka, k̄a) and (kb, k̄b) will stand for the two species of
Majorana fermi fields, sa and sb will denote the associated spin fields, etc.
We will also use the notations a†, a and b†, b for the fermion creation and
anihilation operators associated with the two copies; these operators are
assumed to satisfy the canonical anticommutators (2.6) between them-
selves, and a†, a anticommute with b†, b. Of course, this doubled Majorana
fermion system is equivalent to a single copy of a free Dirac fermion.

We will study this system in a finite-size geometry, with the spatial
coordinate x compactified on a circle of circumference R. Let us call
Hdiag the space of states generated by the creation operators a†, b† from the
‘‘diagonal’’ vacua |0PNS, NS — |0PNS, a é |0PNS, b and |0PR, R — |0PR, a é |0PR, b.
Consider the operator

Y=
1

2p
F

R

0

5ka“kb+
im
2

k̄akb
6 dx (A.1)

acting in the space Hdiag. It is easy to check that it commutes with the
Hamiltonian of this doubled system, and anihilates both the above
‘‘diagonal’’ vacua |0PNS, NS and |0PR, R. This operator is just one of the
generators of the infinite-dimensional algebra SL(2)5 of the local integrals
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of motion of the free Dirac field theory; (57) in fact, for our present limited
purpose no knowledge about the other generators is needed. It is straight-
forward to derive the commutators

[Y, ma(x) mb(x)]=sa(x) “sb(x) − “sa(x) sb(x), (A.2a)

[Y, sa(x) mb(x)]=−i (ma(x) “sb(x) − “ma(x) sb(x)), (A.2b)

where again “ stands for 1
2 (“x − i“y), and m(x) are the dual spin field. (25) It

is also straightforward to compute the action of this operator on arbitrary
states containing a and b particles. For instance, for the excitations over
the vacuum |0PR, R one obtains

Y= C
n ¥ Z

m
2

ehn[a†
nbn+b†

nan], (A.3)

where hn are defined in (2.13). Similar expression (with n Q k ¥ Z+1
2) holds

for the action of Y in the NS-NS sector. We are going to show that the
general structure of the matrix elements (2.12) (with the exception of the
explicit expressions (2.19) for the ‘‘leg factors’’ g and g̃, which will be
derived in the second part of this section) is a simple consequence of the
relations (A.2) and (A.3).

To save on writing, we will restrict attention to the case m > 0, and
explicitly derive only the particular case K=0 of the expression (2.12); the
analysis can be extended to a other cases in a straightforward way. We will
use the notations

M0, N(n1,..., nN)=˛NSO0| s(0, 0) |n1,..., nNPR for even N

NSO0| m(0, 0) |n1,..., nNPR for odd N
ˇ (A.4)

If N is even, take the identity

0=NS, NSO0| Y, ma(x) mb(x) a†
n1

· · · a†
nN

|0PR, R. (A.5)

which follows from NS, NSO0| Y=0. If N is odd, similar identity, with
ma(x) mb(x) replaced by sa(x) mb(x), should be used. The matrix element in
the r.h.s. of (A.5) can be written as a sum of the matrix element of the
commutator (A.2a) and the matrix element of ma(x) mb(x) Y. Using (A.3)
to compute the latter, one obtains the relation

M0, 0 M0, N(n1,..., nN) C
N

j=1
(ehnj)

=I C
N

j=1
(−1) j − 1 ehnj M0, 1(nj) M0, N − 1(n1,..., nj − 1, nj+1,..., nN), (A.6)
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where I=i if N is even, and I=1 if N is odd. This relation allows one to
obtain recurrently all the matrix elements (A.4) in terms of M0, 0 and
M0, 1(n). It is not difficult to show that the solution of this recurrent rela-
tion has the form

M0, N(n1,..., nN)=i[N/2] M0, 0
1D

N

i=1
g(hni

)2 fN(hn1
,..., hnN

), (A.7)

where [N/2] denotes the integer part of N/2,

g(hn) — M0, 1(n)/M0, 0, (A.8)

and

fN(h1,..., hN)=D
N

i < j
tanh 1hni

− hnj

2
2 . (A.9)

This follows from the well known identities (58) that the products (A.9) obey,

f0, N+1(h, h1,..., hN)

= C
N

j=1
(−) j − 1 tanh 1h − hj

2
2 f0, N − 1(h1,..., hj − 1, hj+1,..., hN) (A.10)

If one expands (A.10) around h=+., the term ’ e−h yields exactly (A.6).
It remains to determine the factors M0, 0 and g(h) in (A.7). The first is

known from ref. 26, see Eqs. (2.16)–(2.17). To find the factors g(hn)=
NSO0| m(0) |nPR/NSO0| s(0) |0PR, let us return to the single Majorana
fermion system (2.2), and consider the matrix element

Y(x, y)=NSO0| m(0, 0) k(x, y) |0PR/NSO0| s(0, 0) |0PR, (A.11)

and similar matrix element Ȳ(x, y) defined as in Eq. (A.11) with k(x, y)
replaced by k̄(x, y). Here x, y are the cartesian coordinates on the euclidean
space-time cilinder, x being the periodic direction. The functions Y and Ȳ

have the following properties:

(i) They satisfy the Majorana field equations

“̄Y(x, y)=
im
2

Ȳ(x, y), “Ȳ(x, y)=−
im
2

Y(x, y); (A.12)
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(ii) Y(x, y) is an analytic function for all real x, y except at the
points (x, y)=(0(mod R), 0), and it obeys the (anti)periodicity conditions

Y(x+R, y)=˛ Y(x, y) for y < 0
− Y(x, y) for y > 0

ˇ . (A.13)

The function Ȳ obeys the same conditions.

(iii) Their singularities at (x, y)=(0, 0) are such that

lim
x, y Q 0

`2 z Y(x, y)=e−ip
4 , lim

x, y Q 0
`2z̄ Ȳ(x, y)=e

ip
4 , (A.14)

where z=x+iy, z̄=x − iy. Also, the functions Y(x, y) and Ȳ(x, y) are
bounded when |y| Q ..

It is possible to show that the above conditions (i)–(iii) define the
functions uniquely. The solution to these conditions has the form

Y(x, y)= C
n ¥ Z

= p

R cosh hn
e

hn
2 g(hn) emy cosh hn − imx sinh hn, for y < 0, (A.15a)

Y(x, y)=−i C
k ¥ Z+1

2

= p

R cosh hk
e

hk
2 g̃(hk) e−my cosh hk+imx sinh hk, for y > 0,

(A.15b)

where hn and hk are the solutions of the Eqs. (2.13), and the functions g(h)
and g̃(h) are defined through the integrals (2.18). The function Ȳ(x, y) is
given by the same sums (A.15a), (A.15b), but with the factor e

h

2 replaced by
e−h

2. It is clear that the sums (A.15a), (A.15b) satisfy (A.12)–(A.14), and one
only needs to check that the analytic continuation of (A.15a) to y > 0
coincides with (A.15b), and vice versa. This is done using standard tricks
with contour deformations. One can write (A.15a), (A.15b) in terms of the
contour integrals

Y(x, y)=`pm F
C− +C+

dh

2p

G(h) e
h

2

1 − e−imR sinh h
emy cosh h − imx sinh h for y < 0,

(A.16a)

Y(x, y)=i `pm F
C− +C+

dh

2p

G(h)−1 e
h

2

1+e imR sinh h
e−my cosh h+imx sinh h for y > 0,

(A.16b)
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where G(h)=exp(o(h)), with o(h) defined as the integral (2.19), G(h)−1

stands for 1/G(h) (not for the inverse function), and the integration is per-
formed along the contours C− , which runs from −. to +. just below the
real axis, and C+, which returns back to −. just above the real axis. The
function G(h) is meromorphic, and both G(h) and G(h)−1 are analytic in
the strip −p < Im h < p. It is easy to verify that

G(h+ip/2) G(h − ip/2)=
emR cosh h − 1
emR cosh h+1

. (A.17)

If, for instance, 0 < x < R, then the contour C− in (A.16a) and (A.16b) can
be shifted downward, h Q h − ip/2, while the contour C+ admits upward
shift h Q h+ip/2. After this deformation the integral (A.16a) assumes the
form

Y(x, y)=`pm F
.

−.

dh

2p
5G(h − ip/2) e

h

2 − i p

4

1 − e−mR cosh h
e−imy sinh h − mx cosh h

−
G(h+ip/2) e

h

2+i p

4

1 − emR cosh h
e imy sinh h+mx cosh h6 (A.18)

As long as x remains within the above interval, this integral now converges
at all y, both negative and positive; it thus defines the analytic continuation
of (A.16a) to all y. The same contour deformations applied to (A.16b)
yields the integral which coincides with (A.18) in virtue of (A.17).

In fact, it is not difficult to find in a similar way a complete basis of
functions Y(x, y) which satisfy (A.12)—(A.14), but are allowed to grow at
|y| Q .; this basis then can be used to derive the full set of matrix elements
(2.12) directly. We will discuss this topic in greater detail elsewhere.

APPENDIX B

In this section we describe some properties of the energy spectrum of
the Hamiltonian (2.3) in the low-T domain m > 0. In subsection BI below
we warm up with the derivation of the small h expansion (5.2) of the meson
masses, and in BII we discuss the relation of the near-intersection pattern
in Fig. 6a to the characteristics of the ‘‘false vacuum’’ resonance.

BI. As is well known, in the low-T regime the interaction term
h > s(x) d2x in (2.1) gives rise to a confining interaction between the fer-
mions of (2.2) (the ‘‘quarks’’). As the result, the particle spectrum of the
IFT (1.1) with h ] 0 consists of bound states of the quarks—the ‘‘mesons.’’
If h is sufficiently small, the lower part of the meson spectrum can be
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studied within the two-quark approximation. One looks for the meson
state (in its rest frame) in the form

|YP=
1
2

F
.

−.

dp
2p

Ỹ(p) a†
pa†

−p |0P, (B.1)

and ignores all multiquark components. Here a†
p are the quark creation

operators normalized according to the canonical anticommutators
{ap, a†

pŒ}=2p d(p − pŒ), and Ỹ(p) is the momentum-space wave function,
which is assumed to be antisymmetric, i.e., Ỹ(p)=−Ỹ(−p). Within this
approximation the eigenvalue problem for the Hamiltonian (2.3) (with
R=.) leads to the Bethe–Salpeter equation

(2w(p) − E) Ỹ(p)=
t3

2
F–

.

−.

m2

w(p) w(pŒ)
51w(p)+w(pŒ)

p − pŒ

22

+
1
2

ppŒ

w(p) w(pŒ)
6 Ỹ(pŒ)

dpŒ

2p
, (B.2)

where the principal value of the integral in the right-hand side is under-
stood, E stands for the meson’s rest energy, and the notations w(p)=
`m2+p2 and

t=12s̄h
m2

2
1
3

— (2s̄t)
1
3 (B.3)

are used. The easiest way to derive this equation is to use the finite-size
matrix elements (2.12) with N=M=2 and take the limit R Q ..

The two-particle approximation is justified if h is small and E is suffi-
ciently close to 2m. In this case one can consistently treat the momenta
p, pŒ in (B.2) as small as compaired to m. Making a rescaling

p=(mt) k, pŒ=(mt) kŒ, (B.4)

and expanding the operators in (B2) in the powers of t, one has

5− E+k2 −
t2

4
k4+

t4

8
k6+ · · · 6 Ỹ((mt) k)

=F–
.

−.

5 2
(k − kŒ)2+

t4

8
(k+kŒ)2+ · · · 6 Ỹ((mt) kŒ)

dkŒ

2p
,

(B.5)

where E is defined as

E − 2m=(mt2) E. (B.6)
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It is useful to write down the configuration-space form of the
Eq. (B.5),

5− E+|X| −
d2

dX2 −
t2

4
d4

dX4 −
t4

8
d6

dX6+ · · · 6 k(X)=5−
t4

2
dŒ(X)+ · · · 6 k(X),

(B.7)

where the configuration-space wave function

k(X)=F
.

−.

dk
2p

e ikX Ỹ((mt) k) (B.8)

is written in terms of the rescaled coordinates,

X=(mt)(x1 − x2), (B.9)

x1, x2 being the positions of the quarks. This function also is antisymmetric,

k(X)=−k(−X). (B.10)

In Eqs. (B.5) and (B.7) the omitted terms · · · are ’ t6 or smaller.
In the leading order in t2 the Eq. (B.7) is just the Schrödinger equation

with the linear potential |X|. It leads to the assymptotic formula (5.1) for
the meson masses (first obtained in ref. 48). One can calculate further
corrections by solving (B.7) perturbatively in t2. Let A(X) be a solution of
the Airy equation

5X −
d2

dX2
6 A(X)=0. (B.11)

It is straightforward to check that the function

F(X)=A(X) −
t2

20
[4X A(X)+X2 AŒ(X)]

+
t4

4
51 −

X2

7
+

X5

200
2 A(X)+1 −

11
35

+
X3

35
2 AŒ(X)6+O(t6) (B.12)

(where prime denotes the derivative) is the perturbative solution of the
equation

5X −
d2

dX2 −
t2

4
d4

dX4 −
t4

8
d6

dX6+O(t6)6 F(X)=0, (B.13)
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and that the function

k(X)=sign(X) F(|X| − E) (B.14)

solves (in the same perturbative sense) the equation (B.7), provided

F(−E)=O(t2); (B.15a)

F(−E)+
t2

2
Fœ(−E)=O(t4); (B.15b)

F(−E)+
t2

4
Fœ(−E)+

t4

8
F −−−−(−E) −

t4

4
FŒ(−E)=O(t6). (B.15c)

Now, let Ai(X) and Bi(X) be the two canonical solutions of the Airy
equation (B.11), and FA(X) and FB(X)—the associated perturbative solu-
tions (B.12) of (B.13). A straightforward calculation shows that the linear
combination

F(X)=FA(X)+s(E) FB(X) (B.16)

with

s(E)=−
Ai(−E)
Bi(−E)

51+
t2 E2

20
1BiŒ(−E)

Bi(−E)
−

AiŒ(−E)
Ai(−E)

2

−
t4

20
1BiŒ(−E)

Bi(−E)
−

AiŒ(−E)
Ai(−E)

2 12E3

35
−

57
14

−
1
20

BiŒ(−E)
Bi(−E)

2+O(t6)6

(B.17)

satisfies the conditions (B.15a)–(B.15c), i.e., (B.14) with this F(X) solves
(B.7).

In the bound-state problem one is interested in the normalizable solu-
tions of (B.7), >.

−. |k(X)|2 dX < ., i.e.

k(X) Q 0 as |X| Q .. (B.18)

Therefore, the bound-state eigenvalues of the energy parameter E in (B.7)
coincide with the zeroes of the amplitude s(E) in (B.16). From (B.17) one
finds for these zeroes,

Ei=zi −
t2

20
z2

i −
t4

280
157 −

11
5

z3
i
2+O(t6). (B.19)

where −zi, i=1, 2, 3,... , are the zeroes of the Airy function, Ai(−zi)=0.

584 Fonseca and Zamolodchikov



It is straightforward to continue this perturbative expansion to higher
orders in t2. However, without proper modifications this does not make
much sense because, starting with the order t4 in (B.7), this expansion
exceeds the accuracy of the two-particle approximation. The exact meson
state |YP contains four-quark, six-quark, and higher components which are
neglected in (B.1). One can check that these multi-quark components lead
to certain corrections to the r.h.s. of (B.2) which start with the terms ’ t4.
Therefore, strictly speaking, even the terms ’ t4 in (B.7) and in (B.19) go
beyond the accuracy of the two-quark approximation. However, it is pos-
sible to argue that the whole of the leading ( ’ t6) correction to (B.2) due to
the multi-quark contributions has the form of the quark mass renor-
malization (5.8), i.e., it ammounts to adding a momentum-independent
term t4Q2/2 to the l.h.s. of (B.7). In turn, this leads to the shift Ei Q

Ei+t4q2/2 in (B.19). Using (B.6) one arrives at the expansion (5.2).

BII. In the low-T domain m > 0 the ground state of the IFT with
R=. and h=0 is two-fold degenerate, with the two vacuum states |0P±

corresponding to the oposite values of the spontaneous magnetization,

±O0| s(x) |0P± = ± s̄. (B.20)

Adding the interaction term h > s(x) d2x with small positive h lowers the
energy density associated with the state |0P− and raises the energy density
of |0P+. That is, the state |0P− becomes the true vacuum of the perturbed
system, while the state |0P+ looses its stability and becomes the ‘‘false
vacuum’’—the global resonance state with the complex energy (3.16).

If h is small, the ‘‘false vacuum’’ decay rate can be computed using the
saddle-point analysis in the Euclidean space-time. (39–41, 21) This analysis
suggests the following qualitative picture of the decay process in real time.
The quantum mechanical tunneling process results in the simultaneous
formation of two quarks separated by the distance Rd=2m/DF % m/s̄h,
which then speed away from each other, the expanding region between the
quarks being the nucleus of the true vacuum. The distance Rd is the size of
the ‘‘critical droplet’’ in the droplet model calculation. (20, 21) As long as the
separation R1, 2 between the quarks remains close to Rd, the state can be
described in term of non-relativistic quantum mechanics of the two-quark
system with the repulsive linear potential −2hs̄ R1, 2. If |R1, 2 − Rd | ° Rd,
a generic state of such two-quark system is described by the wave function

k(Y) ’ A+(Y − EŒ)+Sres(E) A− (Y − EŒ), (B.21)

Ising Field Theory in a Magnetic Field 585



where Y=(mt)(Rd − R1, 2) (the parameter t is defined in (B.3)),
(mt2) EŒ=E − Eres is suitably normalized energy of the system over the
energy Eres of the ‘‘false vacuum,’’ and A± are the solutions of the Airy
equation (B.11),

A± (Y)=Ai(Y) ± iBi(Y). (B.22)

These are the ‘‘running wave’’ solutions, the wave A− (Y) being the state of
the quarks speeding away from each other. The ‘‘scattering amplitude’’ Sres

in (B.21) should be determined (in principle) by solving the problem in the
domain where the quarks are deep inside the classically unaccesible region
R1, 2 < Rd. In this region one expects the relativistic effects, in particular the
multi-quark components of the state, to play a significant role. The solu-
tion taking into account these effects is not yet available,6 and the exact

6 An attempt to apply the two-particle approximation in this region was made in an interest-
ing recent paper. (42) We comment upon the result of this work at the end of Section 7.2.

form of Sres is not known. However, even in the absence of the explicit
solution, one can predict that the amplitude Sres(E), as the function of the
total energy E of this state, must exhibit a resonance pole at the complex
energy (3.16). If E is close to the resonance energy (given by the real part
of (3.16)), this amplitude can be approximated by the Breit–Wigner
formula

Sres(E) %
E/R − DF+iC
E/R − DF − iC

, (B.23)

where R is the spatial size of the system, and DF=Eres/R 4 2s̄ h+O(h3) is
the same as in (5.7). With this approximation for the ‘‘resonance scattering
amplitude’’ Sres(E) in (B.21), and with the relativistic corrections described
in BI taken into account, the wave function (B.21) can be written as

k(Y)=const(FA(Y − EŒ)+sres(EŒ) FB(Y − EŒ)), (B.24)

where

sres(EŒ)=−
C(m, h) R

mt2 EŒ
, (B.25)

and FA and FB are the same perturbative solutions of (B.13) as in (B.16).
Now let us come back to the problem of the meson states, this time

assuming a finite-size geometry of the system, with the spatial coordinate x
compactified on a circle of finite circumference R. If h is sufficiently small,
almost all the analysis of BI remains valid, with the exception of the bound-
state condition (B.18), which has to be slightly modified. When the meson
(i.e., the two-quark system with the confining interaction generated by the
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magnetic field h) is put on a finite-size circle, its energy levels should be
determined from some sort of periodicity condition imposed on the state
wave function, rather then by (B.18). Again, unfortunately the two-quark
approximation in general breaks down in the classically unaccessible
domain |X| ± E (here |X| is the rescaled quarks separation (B.9), and E

relates to the energy E as in (B.6)), where multi-quark components of the
wave function become significant. Although the solution for the full wave
function in this domain is not known, one can note that this problem is
closely related to the above problem of determining the ‘‘scattering ampli-
tude’’ Sres in (B.21), and the form (B.25) of the wave function still applies if
one makes identifications

EŒ=E − mt (R − Rd), Y − EŒ=X − E, (B.26)

which follow from the periodicity of the problem. With this, by demanding
agreement between (B.16) and (B.24), one arrives at the equation

s(E)=sres(E − mt(R − Rd)), (B.27)

which determines the R dependence of the finite-size energy levels
Ei(R) − E0(R)=2m+mt2Ei(R) associated with the meson states; here Ei(R)
are the solutions of the Eq. (B.27).

Eq. (B.27) is derived within the two-quark approximation which is
justified if h is small. It applies when R is sufficiently greater then Rd

(otherwise the domain of validity of (B.24) does not exist). It is not difficult
to see that in this domain (B.27) leads to a pattern of the finite-size energies
very similar to what is shown in the Fig. 6a. Indeed, for small h the reso-
nance width C is expected to be exponentially small (see Eq. (3.18)), and
hence the function sres in the r.h.s. of (B.27) is very small everywhere exept
when E is close to its resonance pole Eres(R) — mt(R − Rd). Therefore,
Eq. (B.27) can hold either by virtue of E being close to one of the zeroes of
the function s(E), which leads to E(R) − E0(R) close to one of the meson
masses Mi, or by virtue of E being close to Eres(R), leading to E(R) − E0(R)
close to DFR. When the both conditions are met, which happens when R
approaches one of the ‘‘near-intersection’’ points Ri, i+1=Mi/DF, one can
use the linear approximation s(E) 4 (E − Ei) sŒ(Ei), which results in a
quadratic equation for E(R). This way one arrives at Eq. (5.13) for the
separations Ei+1(R) − Ei(R).

NOTE ADDED IN PROOF

The identification of the Yang–Lee critical point as the cYL= − 22/5
minimal CFT, which we use in this paper, was extensively verified by
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numerical analysis of the Ising quantum chain in an interesting work. (59)

Although the results in ref. 59 do not specifically concern the critical
domain of the Ising chain and associated scaling functions, an estimate t0=
0.19(1) for the position of the Yang–Lee singularity in the scaling function
can be found there; it appears consistent with our result in Eq. (3.2).
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